

11

INTEGRATED AWARD ENVIRONMENT (IAE)
AGILE FRAMEWORK

August 24, 2015

Version 1.1

IAE Agile Framework is property of GSA FAS - Integrated Award Environment. Use of this artifact
requires the permission of IAE Release Train Engineer Roksana Hossain. This is a living document,
periodically being updated to reflect lessons learned, industry best practices and user feedback. For
any question, comment and feedback please contact Roksana Hossain @ Roksana.hossain@gsa.gov.

General Services Administration
Federal Acquisition Service

Integrated Award Environment

 IAE Agile Framework

i | P a g e

DOCUMENT CONTROL

CHANGE RECORD

This section provides control for the development and distribution of revisions to the document.

VERSION DATE OF ISSUE AUTHORS BRIEF DESCRIPTION OF CHANGE

1.0 Feb 2015 Government and
Technical Governance
Agile Team Members

Initial draft

1.1 August 2015 Government and
Technical Governance
Agile Team Members

Removed Hardening Sprint, Hotfix references

Reorganized content for readability

Aligned content to IAE processes

Updated agile framework process flow graphics

Added estimation techniques

Added Definition of Ready section

 IAE Agile Framework

ii | P a g e

CONTENTS

DOCUMENT CONTROL .. I

CHANGE RECORD .. I

CONTENTS ... II

1 EXECUTIVE SUMMARY ... 1

1.1 SCOPE ... 1
1.2 IAE AGILE FRAMEWORK VISION ... 1
1.3 IAE AGILE FRAMEWORK STRATEGY REFERENCES ... 2

2 IAE AGILE PRINCIPLES AND PRACTICES .. 3

2.1 IAE COLLABORATION PRINCIPLES ... 3
2.2 AGILE ENGINEERING PRACTICES ... 4
2.3 IAE ARCHITECTURE PRACTICES AND PRINCIPLES .. 4

3 IAE AGILE FRAMEWORK KEY CONCEPTS .. 4

3.1 VALUE STREAMS AND THE AGILE RELEASE TRAIN ... 5
3.2 IAE AGILE REQUIREMENTS MODEL .. 5

3.2.1 Epics ... 6
3.2.2 Features ... 6
3.2.3 User Stories .. 7

3.3 BACKLOG MANAGEMENT ... 7
3.3.1 Portfolio Backlog .. 8
3.3.2 Program Backlog .. 8
3.3.3 Team Backlog ... 8

3.4 ESTIMATION TECHNIQUES ... 9
3.4.1 Release Estimation ... 9
3.4.2 Feature Size .. 10
3.4.3 Story Points .. 11
3.4.4 Task Estimation .. 11

3.5 PRIORITIZATION TECHNIQUES .. 11
3.5.1 Weighted Shortest Job First (WSJF) ... 12
3.5.2 MoSCoW model ... 12

3.6 AGILE METRICS ... 13
3.7 AGILE TOOLS .. 15

4 INTRODUCTION TO THE AGILE PROCESS .. 16

4.1 FRAMEWORK LEVELS ... 16

5 PORTFOLIO LEVEL PROCESS OVERVIEW ... 18

5.1 GOVERNING BODY COMMUNICATES NEW INITIATIVES.. 19
5.2 PORTFOLIO BACKLOG FORMATION ... 19
5.3 EPIC UNDERSTANDING AND ALTERNATIVES .. 19
5.4 PRIORITIZATION OF THE PORTFOLIO BACKLOG ... 19
5.5 PORTFOLIO MONITORING ... 19

6 PROGRAM LEVEL PROCESS OVERVIEW .. 20

 IAE Agile Framework

iii | P a g e

6.1 PROGRAM BACKLOG GROOMING ... 20
6.2 CHANGE CONTROL BOARD (CCB) APPROVAL ... 21
6.3 RELEASE PLANNING ... 21
6.4 SCRUM OF SCRUMS AND PRODUCT OWNER SCRUM OF SCRUMS .. 21
6.5 RELEASE MANAGEMENT AND RELEASE DEMO ... 21
6.6 RELEASE RETROSPECTIVE .. 22

7 TEAM LEVEL PROCESS OVERVIEW ... 23

7.1 TEAM BACKLOG GROOMING ... 23
7.2 SPRINT PLANNING ... 23
7.3 DAILY SCRUM ... 24
7.4 SPRINT DEMO .. 24
7.5 SPRINT RETROSPECTIVE .. 24

APPENDIX A1: REQUIREMENTS MODEL DETAILS ..A-1

APPENDIX A2: EPIC VALUE STATEMENT ... A-11

APPENDIX A3: ESTIMATION TECHNIQUES .. A-12

APPENDIX A4: PRIORITIZATION TECHNIQUES .. A-15

APPENDIX A5: WSJF TEMPLATE.. A-17

APPENDIX A6: AGILE CEREMONIES .. A-18

APPENDIX A7: AGILE TOOLS ... A-24

APPENDIX A8: AGILE ENGINEERING PRACTICES ... A-25

APPENDIX A9: AGILE ARCHITECTURE PRACTICES.. A-27

APPENDIX A10: AGILE ARCHITECTURE PRINCIPLES ... A-28

APPENDIX B1: PORTFOLIO KEY ROLES AND RESPONSIBILITIES ... B-1

APPENDIX B2: PORTFOLIO LEVEL PROCESS DETAILS ... B-2

APPENDIX B3: IAE PROGRAM MANAGER PORTFOLIO CHECKLIST ... B-7

APPENDIX C1: PROGRAM LEVEL ROLES AND RESPONSIBILITIES ... C-1

APPENDIX C2: PROGRAM LEVEL PROCESS DETAILS .. C-3

APPENDIX C3: RELEASE PLANNING CHECKLIST ... C-9

APPENDIX C4: IAE PROGRAM MANAGER PROGRAM-LEVEL CHECKLIST.. C-13

APPENDIX D1: TEAM ROLES AND RESPONSIBILITIES ... D-1

APPENDIX D2: TEAM LEVEL PROCESS DETAILS .. D-2

APPENDIX D3: IAE PRODUCT OWNER TEAM-LEVEL CHECKLIST ... D-8

 IAE Agile Framework

iv | P a g e

Figures
FIGURE 1: IAE GOVERNANCE MODEL .. 2
FIGURE 2: EPIC DECOMPOSITION (HIGH LEVEL) ... 6
FIGURE 3: RELEASE ESTIMATION FLOWCHART ... 10
FIGURE 4: T-SHIRT SIZING FOR FEATURES ... 10
FIGURE 5: IAE AGILE FRAMEWORK HIGH LEVEL PROCESS .. 17
FIGURE 6: PORTFOLIO LEVEL PROCESS.. 18
FIGURE 7: PROGRAM LEVEL PROCESS OVERVIEW ... 20
FIGURE 8: TEAM LEVEL PROCESS OVERVIEW ... 23
FIGURE 9: DEFINITION OF DONE .. A-10
FIGURE 10: EPIC VALUE STATEMENT TEMPLATE .. A-11
FIGURE 11: WSJF PRIORITIZATION MATRIX .. A-17
FIGURE 12: PORTFOLIO LEVEL PROCESS... B-2
FIGURE 13: EPIC LIGHTWEIGHT BUSINESS CASE .. B-3
FIGURE 14: KANBAN WORKSHOP WORKFLOW ... B-5
FIGURE 15: PROGRAM LEVEL PROCESS OVERVIEW .. C-3
FIGURE 16: ROOT CAUSE ANALYSIS – FISHBONE DIAGRAM .. C-8
FIGURE 17: TEAM LEVEL PROCESS OVERVIEW ... D-2

Tables
TABLE 1: BACKLOG MANAGEMENT .. 8
TABLE 2: ESTIMATION TYPES .. 9
TABLE 3: PRIORITIZATION TECHNIQUES .. 12
TABLE 4: MOSCOW MODEL .. 13
TABLE 5: AGILE METRICS SUMMARY .. 14
TABLE 6: PORTFOLIO METRICS .. 14
TABLE 7: PROGRAM METRICS ... 14
TABLE 8: TEAM METRICS ... 15
TABLE 9: IAE AGILE FRAMEWORK LEVELS AND GOVERNANCE FRAMEWORK ... 16
TABLE 10: DEFINITION OF READY .. A-7
TABLE 11: SAMPLE SPREADSHEET FOR CALCULATING WEIGHTED SHORTEST JOB FIRST ... A-15
TABLE 12: AGILE CEREMONIES .. A-18
TABLE 13: KEY ROLES AND RESPONSIBILITIES (PORTFOLIO LEVEL) .. B-1
TABLE 14: IAE PROGRAM MANAGER PORTFOLIO CHECKLIST .. B-7
TABLE 15: KEY ROLES AND RESPONSIBILITIES (PROGRAM LEVEL) ... C-1
TABLE 16: RELEASE TYPES ... C-4
TABLE 17: RELEASE PLANNING CHECKLIST (DAY 1) .. C-9
TABLE 18: RELEASE PLANNING CHECKLIST (DAY 2) .. C-11
TABLE 19: IAE PROGRAM MANAGER PROGRAM CHECKLIST ... C-13
TABLE 20: KEY ROLES AND RESPONSIBILITIES (TEAM LEVEL) .. D-1
TABLE 21: IAE PRODUCT OWNER TEAM CHECKLIST ... D-8

 IAE Agile Framework

v | P a g e

List of Attachments

IAE Agile Metrics V1.5 7/2/2015

IAE CSP Architecture v1.3 7/20/2015

 IAE Agile Framework

1 | P a g e

1 EXECUTIVE SUMMARY

1.1 SCOPE

The Integrated Award Environment (IAE) Agile Framework document describes the Core Values, Agile
and Architecture integration, Agile Implementation Framework and Governance mechanisms for
enterprise Agile adoption for the Integrated Award Environment.

The purpose of the IAE Agile Framework is to share principles, standards, processes, practices and
guidance on the Agile approach for the IAE program. This document will cover the governance
processes for the portfolio, program and teams, key roles and responsibilities, metrics, and
measurements for consistent adoption of the framework for the enterprise.

1.2 IAE AGILE FRAMEWORK V ISION

The IAE Agile Framework Vision is to design and deploy the new IAE by executing business strategies
with a collaborative team spirit, ongoing software delivery, continual stakeholder engagement, and a
relentless desire to improve upon the status quo.

The IAE Agile Framework is intended to:

 Implement adoption of Agile practices across the enterprise to achieve alignment throughout
the organization–stakeholders and vendors alike–to support the overall mission of the
organization.

 Create common definitions that are used consistently at the enterprise level to minimize
confusion over usage of terms in the IAE context.

 Establish a lean and effective IAE governance process that creates the foundation for consistent
and reliable reporting.

 Provide a blueprint for Agile that creates transparency to enable communication and
coordination within and across the enterprise.

 Ensure a process that scales investment manageability, lowers risk of project failure, shortens
the time to realize value, and allows agencies to better adapt to changing needs.

At the core, the IAE Agile Framework is designed to adopt Agile principles and enable execution at the
enterprise scale to support IAE’s mission. It is our intent to continue to inspect and adapt the
implementation of the IAE Agile Framework to make it work for the Program needs.

The IAE Governance Model (Figure 1) contains the high-level governance model for the Agile process.
The IAE Governing Body represents the key stakeholders across the Federal Government (the Award
Committee for E-Government and its related subcommittees). The other teams are described in detail
throughout this document.

 IAE Agile Framework

2 | P a g e

FIGURE 1: IAE GOVERNANCE MODEL

1.3 IAE AGILE FRAMEWORK STRATEGY REFERENCES

The IAE Agile Framework documentation/implementation strategy is based on the content listed below,
and additional content will be incorporated in upcoming revisions of this document.

 U.S. Digital Services Playbook

 The TechFAR Handbook for Procuring Digital Services Using Agile Processes

 Sketching with Code: Protosketching

 Open Source for Good Government

 Scaled Agile Framework (SAFe)

https://playbook.cio.gov/
https://github.com/WhiteHouse/playbook/blob/gh-pages/_includes/techfar-online.md
https://18f.gsa.gov/2015/01/06/protosketch/
https://18f.gsa.gov/2015/01/16/open-source-for-good-government/
http://www.scaledagileframework.com/
http://www.scaledagileframework.com/

 IAE Agile Framework

3 | P a g e

2 IAE AGILE PRINCIPLES AND PRACTICES

In 2001, a group of thought leaders from the software industry established a common set of overarching
values and principles. They are succinctly summarized in the Agile Manifesto, which goes as follows:

We are uncovering better ways of developing software by doing it and helping others to do it. Through
this work we have come to value:

 Individuals and interactions over processes and tools

 Working software over comprehensive documentation

 Customer collaboration over contract negotiation

 Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left more.

Agile development is the practice of designing and releasing software Features in frequent intervals.
Rather than releasing a final version of a software product at one time, Agile teams are continuously
releasing new iterations of a product, adding new Features and refining the user experience based on
constant customer feedback. Using Agile practices, organizations can enjoy a range of advantages
beyond the traditional methods of software development.

 Transparency – Clearer / better expectation of what is happening and when it is happening

 Collaboration – Open invitation to attend team planning and stand-ups and engaging teams

 Prioritization – Involved in priority setting – which stories get worked, in what order

 Acceptance – Help groom (further define) the story – what is it you really want done

 Business Value – Incremental business value delivery

2.1 IAE COLLABORATION PRINCIPLES

The IAE Agile Framework is supported by the following collaboration principles:

 We are transparent

 We are curious

 We are team-oriented

 We are respectful

 We work flatter across boundaries

 We have honest conversations

 We are agile, risk-attentive, and knowledge-hungry

 We listen to understand

 We value face-to-face conversation

 We are empowered and forthcoming

As Agile adoption has evolved for solutions delivery, the processes and practices have matured to
support Agile development at an enterprise scale.

http://www.agilemanifesto.org/

 IAE Agile Framework

4 | P a g e

2.2 AGILE ENGINEERING PRACTICES

IAE implementation must follow consistent standards and practices to support development and
continuous delivery of high quality products. Code quality is achieved by using Agile Engineering
Practices that are inspired from the Extreme Programming (XP) and Lean methodologies. Benefits of
high quality code include:

 Higher customer satisfaction

 Stable code that can respond to business changes

 Development scalability

 Higher development velocity

 Ability to innovate

For a more detailed description of Agile engineering practices, see Appendix A8.

2.3 IAE ARCHITECTURE PRACTICES AND PRINCIPLES

IAE adheres to SAFe architecture practices that promote “every team deserves to see the bigger picture”
and “every team is empowered to design their part.”

IAE Agile Framework and Architecture are integrated very closely. This framework adheres to the
following architecture principles:

 Be open (source code, data, Application Program Interfaces (APIs))

 Treat data as an asset

 Use continuous Improvement to drive Innovation

 Provide an effective user experience for all stakeholders

 Ensure that business transactions are time- and cost-measurable

 Treat security as foundational

 Build value over maintaining status quo

The SAFe Agile Architecture Principles elaborate on these concepts and are provided in Appendix A10.

3 IAE AGILE FRAMEWORK KEY CONCEPTS

The IAE Agile Framework uses Agile best practices derived from multiple Agile methodologies, including
Scrum, Kanban, Lean, XP and a widely acknowledged Scaled Agile Framework (SAFe)® recognized for
applying Lean-Agile practice at the enterprise scale. The IAE Agile Framework recognizes that there are
several Agile methods that can be used successfully for delivery of software projects. The IAE Agile
Framework recommends using Scrum and Agile Engineering Practices for Agile Teams. Scrum is an
iterative and incremental Agile software development framework for managing product development.
It defines a flexible, holistic product development strategy where a development team works as a unit to
reach a common goal. Agile Engineering Practices support the development of high quality software.

http://www.extremeprogramming.org/
http://cf.agilealliance.org/articles/system/article/file/1422/file.pdf
http://www.scaledagileframework.com/agile-architecture/

 IAE Agile Framework

5 | P a g e

3.1 VALUE STREAMS AND THE AGILE RELEASE TRAIN

Value stream is a metaphor that describes the cadence-based process of building capabilities that
provide a rhythmic flow of value to an organization, business and end user. Value streams are realized
by the Agile Release Train (ART or train), which is a virtual entity, a team of Agile Teams led by a Release
Train Engineer (RTE).

The train serves as the program-level value delivery mechanism. Each train has one Value Stream
assigned to it. Each train also has the dedicated resources necessary to continuously define, build and
test system-level solutions in a specific cadence; for IAE, the cadence comprises two-week sprints and
four releases per year.

ART Principles:

 Release Increments are available at regular intervals for customer preview, internal review and
system level Quality Assurance (QA).

 Frequent periodic planning and release dates for the solution are fixed (dates are fixed; quality
is fixed; scope is variable).

 Teams develop to a common iteration period.

 Short-term and long-term objective milestones are established.

 Continuous system integration is implemented at the top, including system level as well as at
the feature and component levels.

 Architecture Runway includes certain infrastructure components (e.g., common interfaces,
infrastructure, system development kits, common installs, user stores and licensing utilities)
must track ahead of the features that depend on them.

3.2 IAE AGILE REQUIREMENTS MODEL

The IAE Agile Framework promotes building solutions in an iterative and incremental manner. For this
purpose, the framework will support a requirements model consisting of Epic Feature User Story
creation to ensure that solutions are built to meet business needs effectively. Figure 2, Epic
Decomposition (High Level), represents the relationship.

 IAE Agile Framework

6 | P a g e

FIGURE 2: EPIC DECOMPOSITION (HIGH LEVEL)

3.2.1 EPICS

Epics are enterprise initiatives that are large enough such that their development could span multiple
releases. There are business Epics (customer-facing) and architectural Epics (technology solutions).

At the Portfolio level, ideas are elaborated as Epic Value Statements (Refer to Appendix A2, Epic Value
Statement). Portfolio Epics can go across multiple ARTs. Proposed Epics are reviewed and analyzed by
the Portfolio Management Team.

The Governing body approves initiatives, and the Portfolio Management team prepares Portfolio Epics
using value statements, providing success criteria for each Epic, which resides in the Portfolio Backlog.

Portfolio Epics that are approved and assigned to an ART are called Program Epics. Epics approved for
implementation are owned by an Epic Owner.

3.2.2 FEATURES

Epics decompose into Features, the next smallest requirement artifact. They are maintained in the
Program Backlog and are sized to fit within one release. They can originate at the Program level, or they
can derive from Epics defined at the Portfolio and Program levels. IAE has added a level below Feature,
called Sub-Feature, which is simply a way of breaking down Features into smaller pieces of work.
Features may or may not be broken down into Sub-Features.

A Features and Benefits Matrix (FAB) will be used to describe each Feature. Each Feature shall contain:

 Feature Name

 Feature Benefit: For the user and the organization

•Highest level in the Agile requirement hierarchy

•Epics are lightweight business plans for Business and Architecture Initiatives

• Multi-year lifespan

• Implementation involves multiple releases

•Represents multiple features and user stories

•Created and managed by IAE directors, members of Portfolio Management
Team

Portfolio

Epic

•Epic decomposition produces Features

•Features are used to create Minimum Viable Products

•Features are realized in Releases

•Created and managed by IAE Program Managers, members of Product
Management team

Program Feature

•Feature decomposition produces User Stories

•User stories must fit in a sprint

•Takes days, perhaps the full sprint to build

• Created and maintained by team members (Product Owner and project
team)

Team

User Story

 IAE Agile Framework

7 | P a g e

 Acceptance Criteria: To describe when the Feature is complete

Features are typically described using an action verb followed by a short phrase, for example “Create
Payments via PayPal,” and a brief description of the benefit. Features are prioritized using the principle
of Weighted Shortest Job First (WSJF). The Change Control Board approves Features to be implemented
in each upcoming release.

3.2.3 USER STORIES

Features/Sub-Features decompose into User Stories, which should be constructed in such a way that
they can be completed within one sprint. User Stories typically follow the pattern “As a <persona>, I can
<activity> so that <business value>” and are primarily used to describe intent. User Stories do not
contain implementation details. User Stories must contain acceptance criteria. Acceptance criteria are
set of requirements that must be completed for the story to be finished and let the team know that the
story is ‘Done’. In addition to being derived from Features, stories can also originate at the team level.
User Stories can be created by anyone at the team level. During Sprint Planning, the team moves User
Stories from the Team Backlog into the Sprint Backlog for implementation.

3.3 BACKLOG MANAGEMENT

In Agile, the term “backlog” refers to the requirements repository, and managing the backlog is a crucial
element of the Agile Software Development Life Cycle (SDLC). The backlog contains three levels of
requirements: Epics, Features and Stories which, along with the backlog itself, align with the three
levels of the enterprise: Portfolio, Program and Team.

Portfolio-level Epics are prioritized, and as development team capacity becomes available, the highest
priority Epics are decomposed into Program Epics and then Features at the Program level. Releases are
planned quarterly, and features are estimated, prioritized and assigned to releases. Once a feature is
assigned to a release, it is decomposed into user stories and tasks and then implemented in a series of
two-week sprints.

The IAE Agile Framework has the following Backlogs that hold the requirement artifacts, as shown in
Table 1:

 IAE Agile Framework

8 | P a g e

TABLE 1: BACKLOG MANAGEMENT

3.3.1 PORTFOLIO BACKLOG

The Portfolio Backlog is aligned with the Portfolio level of the enterprise and is the single definitive
repository for all upcoming work anticipated to achieve the strategic vision for the enterprise. It
consists of the future Epics intended to address user needs and deliver business benefits. It also
includes architectural Epics required to provide the infrastructure and platform needed to support the
realization of business epics.

3.3.2 PROGRAM BACKLOG

The Program backlog is aligned with the Program level of the enterprise and is the single definitive
repository for all upcoming work anticipated to advance the ART. It consists primarily of the future
Features intended to address user needs and deliver business benefits. It also includes architectural
Features required to build the architectural runway.

3.3.3 TEAM BACKLOG

The Team Backlog represents the collection of all the things a team needs to do to advance its portion of
the system solution. It can contain User Stories, future Features, technical Stories, tasks, defects,
infrastructure work, spikes, refactors, and anything else a team needs to do. Stories can be broken
down even further into tasks within the Story in order to make the development more manageable.
Each Story must also contain a set of acceptance criteria that can be used to ensure that the Story

Level Backlog Artifact Scope Duration Responsible

Portfolio
Portfolio
Backlog

Epics with Value
Statements

Portfolio Epic can
span multiple ARTs

An Epic spans
multiple Releases

Portfolio
Management
Team

Program
Program
Backlog

Program Epics with
Value Statements,
decomposed to
Features

Program Epics and
features are
allocated to an
ART

A Feature is
realized in a
Release

Product
Management
Team

Team

(This covers
two rows:
Team Backlog
and Sprint
Backlog.)

Team
Backlog

User Stories with
Acceptance
Criteria

Team backlog
A User Story is
implemented in a
Sprint

Product
Owner(s)

Sprint
Backlog

User Stories with
Acceptance
Criteria

Sprint backlog
A User Story is
implemented in a
Sprint

Product
Owner(s)

 IAE Agile Framework

9 | P a g e

delivers the intended benefits. During Sprint Planning, the team moves items from the Team Backlog
into the Sprint Backlog for implementation during the sprint.

3.4 ESTIMATION TECHNIQUES

Estimation is an essential part of any project management activity. Agile is no different: We must
estimate for scoping, scheduling and budgeting.

The purpose of estimation varies at each level in the IAE Agile Framework. The IAE Framework
incorporates several attributes for creating an estimate. Attributes include effort, complexity, risk, team
size, domain knowledge, platform quality and technical expertise.

TABLE 2: ESTIMATION TYPES

Level Backlog Items Measure Who

Program Features T-Shirt Size Product Management team

Team User Stories Story Points Agile Team members performing the
work

Team Tasks Hours Agile Team members performing the
work

3.4.1 RELEASE ESTIMATION

The IAE Agile Framework supports each team to independently estimate User Stories given their unique
circumstances; however, in order to manage at the Portfolio and Program levels, it is critical to have
estimations to forecast and set stakeholder expectations.

The “Velocity” of a team is the number of story points completed in one sprint. Each team will have a
different velocity. For consistency at the program level, velocity across the teams is normalized, and
program velocity is generated. The program velocity is used to predict releases and is used extensively
in release planning.

The following diagram represents the usage of estimates and velocity to determine Release Scope.

 IAE Agile Framework

10 | P a g e

FIGURE 3: RELEASE ESTIMATION FLOWCHART

3.4.2 FEATURE S IZE

At the Feature level, Feature Size, which is the closest proxy for duration, is used for estimation. Feature
sizing for each item on the backlog uses the T-shirt sizing method of estimating, which is described more
fully in Appendix A3. The figure below provides specific information about how features should be
sized.

FIGURE 4: T-SHIRT SIZING FOR FEATURES

 IAE Agile Framework

11 | P a g e

The estimates at the Portfolio level support resource allocation and forecasting Epic Completion. The
estimates at the Program level support Release Planning-related forecasts. For estimating the scope of
a specific release, a more accurate release estimating approach is described below.

3.4.3 STORY POINTS

IAE uses story points to estimate User Stories. Story points are used for relative sizing of user stories.
The process of agreeing on a size measurement for the stories or tasks in a product backlog is done by
the team responsible for delivering the work, usually using a planning game.

There are several estimation scales such as T-shirt sizes, points, exponential, etc. At IAE, teams will
implement a Fibonacci sequence of sorts. Teams will use story point estimation to provide consistency
across the program. Story points can be implemented using the planning poker Fibonacci sequence 1, 2,
3, 5, 8, 13, 20, 40 and 100. User Stories with large story point estimates are broken down to ensure that
Stories fit within a sprint boundary.

Product Owner(s) create User Stories that represent a wide variety of intent across the ART. These
Stories are estimated based on input from each team, creating a set of widely available reference
Stories. Each team uses these reference Stories as its baseline for relative estimation of the individual
Team backlog.

3.4.4 TASK ESTIMATION

Sprint Teams provide Task Estimation in hours for each task. Hours worked on a task are logged each
day work is completed. If the original task estimate changes, the team member working on the task
provides an updated effort estimate for the remainder of the work. The intent of this estimation is to
provide team members with daily feedback on their estimates. It helps improve the team estimation,
which ultimately helps with Program and Portfolio estimation.

3.5 PRIORITIZATION TECHNIQUES

The IAE Agile Framework uses two prioritization techniques: WSJF and the MoSCoW model, which
derives its name from “Must have, Should have, Could have and Won’t have.” The following table
represents usage of these techniques.

 IAE Agile Framework

12 | P a g e

TABLE 3: PRIORITIZATION TECHNIQUES

Level Artifact Technique Responsible

Portfolio Portfolio Backlog WSJF Portfolio Management
Team

Program Program Backlog WSJF Product Management
Team

Team Team/Sprint Backlog MoSCoW Product Owner(s) and
the Agile Team

3.5.1 WEIGHTED SHORTEST JOB F IRST (WSJF)

The WSJF technique helps to prioritize the backlog with an economic view. It is calculated as the Cost of
Delay (CoD) divided by job duration. Jobs that can deliver the most value (CoD) and are of the shortest
duration are selected first for implementation. The following factors contribute to CoD:

 User-Business Value

 Time Criticality

Cost of Delay = User Business Value + Time Criticality

WSJF = Cost of Delay / Job Size

To calculate WSJF, the stakeholders for each backlog rate each backlog item using a Fibonacci sequence
(1, 2, 3, 5, 8, 13, and 20) relative to one another for each of the CoD variables. The emphasis is on the
discussion to support prioritization of each backlog item. The item with the highest WSJF also has the
highest priority. The owner of a specific backlog facilitates the discussion.

Benefit: WSJF is a technique that prioritizes the most valuable features to the business that can be
delivered at the earliest.

3.5.2 MOSCOW MODEL

It is essential that the Team Backlog and the Sprint Backlog are prioritized to enable Agile teams to
deliver on the highest value requirements first and deliver business value at the earliest. Once there is a
clear set of User Stories, it is important to ensure they are ranked. This helps everyone (customer,
designer, developers and testers) understand the most important requirements, in the correct order to
develop them, and to understand those that won't be delivered if there are time or resource
constraints.

The MoSCoW model is widely used at the Team Level for Team and Sprint Backlog Prioritization.

 IAE Agile Framework

13 | P a g e

TABLE 4: MOSCOW MODEL

Letter Term Description

M Must Describes a requirement that must be satisfied in the final solution for the
solution to be considered a success.

S Should Represents a high-priority item that should be included in the solution if it is
possible. This is often a critical requirement but one that can be satisfied in
other ways if strictly necessary.

C Could Describes a requirement that is considered desirable but not necessary. This
will be included if time and resources permit.

W Won’t Represents a requirement that stakeholders have agreed will not be
implemented in a given release, but might be considered for the future.

Benefit: MoSCoW has been used in time-boxed iterative development since the 1980s and is a proven
prioritization technique to sort Features (or User Stories) into priority order – a way to help teams quickly
understand the customer’s view of what is essential for launch and what is not.

3.6 AGILE METRICS

The Agile Manifesto emphasizes the importance of satisfying the customer through early and
continuous software delivery. According to an Agile Manifesto principle, the primary measure of
progress is working software. IAE encourages all managers and teams to hold their measurements
against this critical principle. IAE is committed to showing progress through the demonstration of
working software at the end of each sprint and release. In addition to system- and team-level
demonstrations, the Agile metrics listed below can help managers and teams monitor progress and
focus on quality.

Refer to the Attachment, IAE Agile Metrics (listed in the front matter of this document) for a more
detailed description of metrics.

 IAE Agile Framework

14 | P a g e

TABLE 5: AGILE METRICS SUMMARY

ADDITIONAL METRICS:

TABLE 6: PORTFOLIO METRICS

CATEGORY PORTFOLIO METRICS YEAR 1 YEAR 2 YEAR 3 YEAR 4

Value Delivery # of Releases to Production

Cost Savings # of Legacy Systems Retired

Quality # of Defects

Customer % of Customer Satisfaction

TABLE 7: PROGRAM METRICS

PROGRAM PERFORMANCE METRICS RELEASE 1 RELEASE 2 RELEASE 3 RELEASE 4

Release Velocity

of Features Planned

of Features Accepted

Metric Description Benefit Usage Level Owner

Portfolio Progress
Report

Roll-up of business and
architectural Epics across
projects in a portfolio at a
glance

Provides a high-level
overview of all Epics for
monitoring progress.

Portfolio
(Team)

Program
Managers

Epic Progress Report
The Epic Progress Report
shows a list of complete,
incomplete and un-estimated
stories in an Epic.

Provides ability to track
progress of Epics of
incomplete or un-
estimated work.

Portfolio
(Team)

Program
Managers

Release Burndown
by Iteration

The Release Burndown by
iteration chart determines the
overall status of the release
by plotting Story completion
status on a sprint-by-sprint
basis.

Provides the current
rate at which work is
being completed at the
Release level.

Program
(Team)

Program
Managers

Feature Progress
Report

Provides business
stakeholders with insights into
the progress of Features.

Provides the current
rate at which work is
being completed at the
Feature level.

Program
(Team)

Program
Managers

Sprint Burndown
This is a graphical
representation of the actual
work completed and work
remaining, measured against
an idealized line.

Provides the current
rate at which work is
being completed at the
sprint level.

Project (Team) Scrum
Master

 IAE Agile Framework

15 | P a g e

PROGRAM PERFORMANCE METRICS RELEASE 1 RELEASE 2 RELEASE 3 RELEASE 4

% of Features that are Architectural

of Stories Planned

of Stories Accepted

QUALITY METRICS

% of Unit Test Coverage

% of Tests Automated

of System Tests

of Defects Outstanding+

TABLE 8: TEAM METRICS

TEAM PERFORMANCE METRICS SPRINT 1 SPRINT 2 SPRINT 3 SPRINT 4

Velocity Planned

Velocity Actual

of Stories Planned

of Stories Accepted

% of Stories Accepted

QUALITY METRICS

% of Unit Test Coverage

% of Test Automated

Total # of Tests

of Builds per Day

Average Build Duration

of Defects Outstanding

3.7 AGILE TOOLS

IAE has adopted a suite of automated tools to implement the Agile Life Cycle Management. JIRA is being
used as IAE’s Backlog Management tool. The Atlassian suite contains JIRA and Confluence, which
provide essential features for implementing the Agile process described in this framework. Additional
plug-in software packages have been implemented to enhance the suite and provide an enterprise
capability.

 IAE Agile Framework

16 | P a g e

4 INTRODUCTION TO THE AGILE PROCESS

4.1 FRAMEWORK LEVELS

The IAE Agile software development framework is designed to enable agility at scale across the
enterprise. The process used to implement this methodology is applied on all three levels to enable the
scaling of Agile across the organization. This framework establishes the platform where Agile Teams
work in a synchronized cadence with one another to create integrated software that satisfies
organizational goals.

The following table summarizes the three levels of the IAE Agile Framework:

TABLE 9: IAE AGILE FRAMEWORK LEVELS AND GOVERNANCE FRAMEWORK

Level Purpose Alignment

Portfolio Define new business initiatives, strategic
themes, and Epics

 Define and prioritize the Portfolio Backlog

 Allocate resources, budget and capacity

 Move Epics into implementation

 Guide program execution

 Provide overall governance

Align portfolio to the enterprise
strategy, goals and objectives

Program Provide program vision and roadmap

 Define and prioritize the Program Backlog

 Implement Releases via prioritized Features

 Establish cadence and synchronization across
the program

 Provide overall Release planning, execution,
and management

 Enable transparency and collaboration across
the program

 Define Program Metrics

 Demonstrate and deliver an integrated
system

Align program implementation to
the portfolio vision

Team Deliver to Release Objectives

 Build high quality software

 Maintain continuous coordination and
collaboration across teams

 Provide frequent demonstration of working
software

 Incorporate improvement continuously

Align product development and
delivery to the program vision

 IAE Agile Framework

17 | P a g e

The following diagram illustrates the IAE High Level Process Flow.

FIGURE 5: IAE AGILE FRAMEWORK HIGH LEVEL PROCESS

 IAE Agile Framework

18 | P a g e

5 PORTFOLIO LEVEL PROCESS OVERVIEW

At this level, the Portfolio Management Team reviews all strategic initiatives and business and
technology (architecture) Epics to ensure that they align with the overall enterprise strategy, to provide
the greatest benefit and value for the organization and its key stakeholders. A comprehensive Portfolio
Backlog is created at this level with the input of the stakeholders. The portfolio backlog is created first
then prioritized, and Epics are created after an initial analysis. The final list of Epics is prioritized, and
budget and resources are allocated to the approved initiatives (Epics). The ART formation is initiated at
this level, and Epics are allocated to the ART.

Refer to Appendix B for Portfolio Level Details.

The following diagram represents the Portfolio Level Process, which is at the highest level in the
framework.

FIGURE 6: PORTFOLIO LEVEL PROCESS

 IAE Agile Framework

19 | P a g e

The following sections provide a high level overview of the Portfolio Level processes:

5.1 GOVERNING BODY COMMUNICATES NEW INITIATIVES

The Governing Body communicates enterprise vision and strategy. It defines strategic themes and new
business initiatives that influence Epics evaluation, program vision and the roadmap. The Governing
Body meets at the regular ACE/FACE/PCE meetings (Award Committee for E-Government / Financial
Assistance Committee for E-Government / Procurement Committee for E-Government), which take
place quarterly.

5.2 PORTFOLIO BACKLOG FORMATION

The Portfolio Backlog is initially formed by adding potential Business and Architectural Epics to the
Kanban. These potential epics arise when “big business and architectural ideas” are introduced, also
known as the Problem/Solution Needs Identification, from specific, itemized business objectives to the
evolving enterprise business strategy.

5.3 EPIC UNDERSTANDING AND ALTERNATIVES

The purpose of the Epic Kanban Process is to provide visibility and guide new initiatives through the
analysis process, to the Go/No Go decision. The Product Management Team reviews and analyzes new
initiatives, develops Epic value statements, and develops lightweight business cases. They prepare
recommendations of proposed Epics for final approval by the Portfolio Management Team or the
Change Control Board (CCB) Team. If the Epic requires review by the CCB, it is reviewed by them before
it’s moved to the Portfolio Backlog. Otherwise, once the Portfolio Management Team approves an Epic,
it is added to the Portfolio Backlog.

5.4 PRIORITIZATION OF THE PORTFOLIO BACKLOG

The Portfolio Management Team is responsible for managing investments, driving Epic development,
monitoring Epic implementation progress, and grooming the Portfolio Backlog. During the Portfolio
Management meeting, Epics in the Portfolio Backlog are reviewed on a periodic cadence and prioritized
using WSJF based on the overall enterprise vision and strategic direction. The prioritization of Epics
ensures that the highest priority Epics are promoted to implementation when there is sufficient capacity
from the ARTs. The Portfolio Management Team provides direction and guidance on the overall
solution strategy for the implementation of Portfolio Epics and the execution of releases.

5.5 PORTFOLIO MONITORING

The Portfolio Management Team performs a Portfolio Health Check, reviewing overall status,
dashboards and metrics on the implementation Portfolio Epics and the execution of Releases. The
Portfolio Management Team takes action to help resolve any impediments escalated from Releases and
Teams. Corrective actions are applied to ensure continuous delivery of value.

 IAE Agile Framework

20 | P a g e

6 PROGRAM LEVEL PROCESS OVERVIEW

At this level the Program Epics are reviewed and decomposed by the Product Management Team, which
creates the Release Roadmap using techniques such as Minimum Viable Product, also known as the
product with the highest return on investment versus risk. The Features that are decomposed from the
Program Epics are then prioritized using techniques such as WSJF.

All the teams working in an ART are synchronized, i.e., they start and stop at the same time. The
cadence of delivery is also orchestrated by the RTE, a member of the Release Management team.
Program Risk Management occurs at this level, and risks are escalated from Team to Program to
Portfolio level.

Refer to Appendix C for Program Level Details.

The following diagram represents the Program Level Process, which is at the midlevel in the framework.

FIGURE 7: PROGRAM LEVEL PROCESS OVERVIEW

At the Program level, the ART teams take responsibility for implementing Epics, Features and User
Stories. All of the ARTs running within the enterprise work in a synchronized cadence. Coordinating
efforts among multiple teams in regular, repeatable, short intervals leads to decreased variability in the
work and results in a more efficient, dependable, reliable and adaptable work product.

The following sections provide a high level overview of the Program Level Processes:

6.1 PROGRAM BACKLOG GROOMING

Epics at the Program level are decomposed into Features and sub-Features in the Program Backlog
during the Backlog Grooming process. This is done primarily by the Product Management Team, Epic
Owners and the System Architect, but also with assistance from the System Team, Release Management
Team, the Development Operations (DevOps) Team, and the Independent Validation & Verification
(IV&V) Team.

 IAE Agile Framework

21 | P a g e

The Backlog Grooming is used to prepare for the Release Planning ceremony. During Backlog Grooming,
existing Features are reviewed and elaborated upon, which includes defining acceptance criteria and
establishing estimates. Larger Features are evaluated for breaking down into smaller Features or sub-
Features. Features are also evaluated to determine if they need to be decomposed into related
architectural Features. In addition, the capacity that can be allocated for these architectural Features in
upcoming releases is determined. Finally, the Features and sub-Features in the Program Backlog are
prioritized using the WSJF approach.

6.2 CHANGE CONTROL BOARD (CCB) APPROVAL

The CCB serves as the content authority that is empowered to decide what gets implemented on the
ART. It reviews, edits and approves Features to be implemented in the upcoming release via the
approval of the Release Roadmap.

6.3 RELEASE PLANNING

Agile releases run on a three-month cadence of Release Planning -> Implementation -> Release Demo ->
Release Retrospective. Release Planning is the ceremony that ensures the program stays in this rhythm
of continuous development and delivery. Release Planning takes place at the beginning of each release.
This ceremony is facilitated by the RTE and supported by all members of the program. This face-to-face
ceremony level sets everyone’s understanding of the program’s vision and roadmap and secures the
development teams’ commitment to the objectives for the upcoming release. The development teams
will assess and mitigate technical dependencies across teams. This high level of collaboration ensures
the resulting plan is realistic and implementable.

6.4 SCRUM OF SCRUMS AND PRODUCT OWNER SCRUM OF SCRUMS

The Scrum of Scrums is necessary to manage dependencies across teams during development of the
release and to manage risk. The RTE, also known as the Chief Scrum Master, facilitates the Scrum of
Scrums meeting with all the teams’ Scrum Masters and the Program Manager. The Scrum of Scrums
ensures that teams are meeting their sprint objectives, removes any problems that are causing delays or
confusion, and raises the level of awareness of dependencies among the Agile teams. Similarly, a
Product Owner Scrum of Scrums is used to promote collaboration among Product Owners and provides
an opportunity for Product Owners to discuss the interdependencies among their program areas. The
RTE facilitates this meeting where Product Owners report status, planned work and current
impediments to progress.

6.5 RELEASE MANAGEMENT AND RELEASE DEMO

One of the Agile Manifesto principles states that the primary measure of progress is working software.
The Release Management process monitors the progress of sprints toward the realization of important
features. In some cases, no software will be released until the end of the quarterly release cycle;
however, to reap the benefits of the Agile development process, it might be desirable to have additional
releases of working software within the quarterly cycle. This could be required to support an external
milestone, to promote bug fixes, or just to provide benefit to users at the earliest point in time.

 IAE Agile Framework

22 | P a g e

The IAE Agile Framework prescribes a Release Demo prior to each release (major or minor) as well as at
the end of each sprint, when Features are completed and can be presented via working software. The
Release Demo provides an integrated, program-level view of all new Features delivered by all the teams
in the most recent iteration. The Release Demo lets the teams showcase their accomplishments and
allows business stakeholders and customers to provide immediate feedback. The Release Demo also
ensures that full and continuous integration takes place frequently. The System Team stages the
Release Demo with support from individual development teams. At the end of a release, a retrospective
is held immediately after the Release Demo to discuss how future releases can be executed more
effectively.

6.6 RELEASE RETROSPECTIVE

A principle in the Agile Manifesto states that at regular intervals, the team reflects on how to become
more effective. IAE adheres to this principle by holding a Release Retrospective, also known as the
Inspect and Adapt workshop, at the end of each release. During this ceremony, participants review the
agreed upon quantitative metrics to evaluate the performance of the current release. This is followed
by a retrospective on the release and a problem-solving workshop. Corrective action plans are devised
and reviewed by the group. As a result of this workshop, teams come up with a set of improvement
User Stories that are added to the program backlog and incorporated into the next release planning
session, thus assuring that action will be taken.

BENEFITS OF RETROSPECTIVE:

• Incorporates timely feedback on what works and what doesn’t.
• Provides early and frequent feedback to adapt.
• Boosts team morale with collaborative processes.
• Generates new ideas for improvements.
• Keeps the focus on the identified goals of the sprint, release and project.
• Celebrates successes!
• Improved productivity: By applying lessons learned and reducing rework, the team can get

more productive work done.
• Improved capacity: Retrospectives provide a venue for spreading knowledge, and as the

number of people who have the knowledge increases, so does the number of people who can
perform tasks associated with the knowledge.

• Improved quality: We can improve quality on our projects by finding the circumstances that led
to defects and removing the causes.

• Improved capacity: Retrospectives focus on finding process efficiency improvements, which can
improve teams’ capacity to do the work.

 IAE Agile Framework

23 | P a g e

7 TEAM LEVEL PROCESS OVERVIEW

The team level in the IAE Agile Framework consists of teams who are empowered to make local
decisions and are accountable to deliver on the Program Commitments. All the teams develop in
cadence and synchronization to the Release Schedule.

Refer to Appendix D, Team Level Details.

The following diagram represents the Team Level Process, which is at the lowest level in the framework.

FIGURE 8: TEAM LEVEL PROCESS OVERVIEW

The primary purposes of the team process are to ensure that quality software is developed and that the
product aligns with the program vision.

The following sections provide a high level overview of the Team Level Processes.

7.1 TEAM BACKLOG GROOMING

Team Backlog Grooming ensures that the priorities align with the latest program direction and that the
backlog is elaborated sufficiently to support successful Sprint Planning. The Agile Team is expected to
support the Product Owner in grooming and refining the Team Backlog. Technical expertise will help
establish accurate size estimates for items in the backlog. Large user stories may be decomposed into
smaller stories and tasks.

7.2 SPRINT PLANNING

During Sprint Planning, each team picks high-priority user stories from the Team Backlog and commits
them to the Sprint backlog for execution. The team’s backlog should be set up by the Product Owner
prior to Sprint Planning. Sprint Planning is typically time-boxed to four hours or fewer. The output of
this process is the team’s commitment to implement stories in the Sprint backlog. The team also
commits to achieve Sprint goals that support the current release objectives.

 IAE Agile Framework

24 | P a g e

7.3 DAILY SCRUM

The Daily Scrum is designed to help the team set the context for the coming day’s work and to
communicate the progress of the work completed from the previous day. This meeting is time-boxed to
15 minutes to keep the discussions concise and relevant. The team can quickly share information on
what was accomplished yesterday, what is planned for today, and report any impediments. The Scrum
Master is responsible for helping the team resolve impediments.

7.4 SPRINT DEMO

The purpose of the Sprint Demo is to show the progress the team has made to the Product Owner and
other stakeholders. The Sprint Demo, sometimes called the Sprint Review or Team Demo, takes place at
the end of each two-week Sprint. The Sprint Demo starts with a quick review of the Sprint goals and
metrics, followed by a demonstration of each completed Story. After the demonstration, the team
discusses which Stories were not completed and why they were not done. A retrospective is held
immediately after the Sprint Demo to discuss how the team can be more effective going forward.

7.5 SPRINT RETROSPECTIVE

At the end of each Sprint, the team holds a retrospective to reflect on how to become more effective.
This meeting is typically time-boxed to an hour for team members to discuss what went well, what
didn’t, and what the team can do better next time. The team reviews performance metrics and
discusses any impediments and challenges faced during the past iteration. Root cause analysis is
performed, and corrective actions are logged as User Stories in the Team Backlog. The team picks one
or two improvement items to target for the next Sprint. If necessary, the improvement items may
become backlog items in the form of User Stories that are prioritized by the Product Owner with input
from the team.

 IAE Agile Framework

A-1 | P a g e

A. GENERAL INFORMATION

APPENDIX A1: REQUIREMENTS MODEL DETAILS

EPICS

Epics are enterprise initiatives that are large enough such that their development could span multiple
releases and could impact multiple release trains. There are business Epics (customer-facing) and
architectural Epics (technology solutions). It is also possible for Epics to originate from the program
level.

Because of their size and impact on the organization, Epics must go through a careful evaluation process
to determine their viability. The evaluation system used is called the Kanban system. Two criteria used
in the evaluation of Epics are the Epic Value Statement (refer to Appendix A2: Epic Value Statement
Template) and the Epic Lightweight Business Case. The Epic Value Statement is used in the Kanban
Review step and is intended to provide just enough information to have a meaningful discussion about
the proposed initiative.

FEATURES AND SUB-FEATURES

Epics decompose into Features, the next smallest requirement artifact. They are maintained in the
Program Backlog and are sized to fit within one release. They can originate at the Program level, or they
can derive from Epics defined at the Portfolio and Program levels. IAE has added a level below Feature,
called Sub-Feature, which is simply a way of breaking down Features into smaller pieces of work.
Features may or may not be broken down into Sub-Features.

A Features and Benefits Matrix (FAB) can be used to describe each Feature. A Feature contains three
parts. The first part, Feature, contains a short phrase that gives the Feature a name and some implied
context. The recommended format of this short phrase is an action verb followed by the scope or
capability of the Feature. The second part, Benefit, provides a short description of the benefit of the
Feature to the user and the organization. The last part, Acceptance Criteria, is used to determine that
the Feature has been implemented correctly. Acceptance criteria help set the scope of the Feature and
support development of associated User Stories and functional tests.

USER STORIES

Features/Sub-Features decompose into User Stories, which should be constructed in such a way that
they can be completed within one Sprint. User Stories describe the detailed implementation work and
are the primary element of the team backlog. In addition to being derived from Features, Stories can
also originate at the team level.

 IAE Agile Framework

A-2 | P a g e

In software development and product management, a User Story is a description that captures what a
user does or needs to do as part of his or her job function. User stories are used as the basis for defining
the functions a business system must provide. They capture the 'who', 'what' and 'why' of a
requirement in a simple, concise way, often limited in detail by what can be hand-written on a small
paper notecard.

User stories typically follow the pattern “As a <persona>, I can <activity> so that <business value>.” If
the “persona” is a device or another system, simply substitute the device or system name in place of the
persona. Technical Stories describe other types of necessary system behavior. Technical Stories can be
expressed in technical, rather than user-centric language, but the “…so that…” portion of the story
should be retained so that the motivation for the story is understood.

User Stories are prioritized by the product owner. User stories can be broken down into tasks and
estimated by the developers. User stories are accepted by the product owner based on the predefined
Acceptance Criteria.

PERSONAS
Personas are people or system functions that are described in terms of category of person/system that
interacts with the software product (CFDA, WDOL, etc.). As a software product is generally intended for
use by more than one category of person, with potentially different preferences and expectations of the
product, the team creates one persona for each category it deems important to serve.

Different Personas are described in User Stories so developers can understand what privileges
(authentication and authorization) need to be developed for each Persona.

Testers test using different user credentials to mirror the functionality based on the category of
person/system (AKA, Persona).

ACCEPTANCE CRITERIA

Acceptance Criteria are a set of statements, each with a clear pass/fail result, that specify both
functional (e.g., minimum viable product) and non-functional (e.g., compliance to standards)
requirements applicable at the current stage of project integration. These requirements represent
“conditions of satisfaction.” There is no partial acceptance: Either a criterion is met or it is not.

 Functional Criteria: Identify specific user tasks, functions or business processes that must be in
place. A functional criterion might be “A user is able to access a list of available reports.”

 Non-functional Criteria: Identify specific non-functional conditions the implementation must
meet, such as design elements. A non-functional criterion might be “Workflow buttons comply
with the Human Interface Guidelines.”

 Performance Criteria: If specific performance is critical to the acceptance of a User Story, it
should be included. This is often measured as a response time, and it should be spelled out as a
threshold such as “less than 2 seconds response time.”

Acceptance Criteria must be:

• Expressed clearly

 IAE Agile Framework

A-3 | P a g e

• In simple language the customer would use, without ambiguity as to what the expected

outcome is

• Actionable
• Comprehensive in scope, i.e., it must include what is acceptable and what is not acceptable

• Testable, i.e., easily translated into one or more manual/automated test cases.

Acceptance Criteria define what must be done in order for a Feature or User Story to be accepted by the

product owner.

Acceptance Criteria may reference what is in the project’s other User Stories or design documents to

provide details, but they should not be a re-hash of them.

Acceptance Criteria should be relatively high-level while still providing enough detail to be useful.

Acceptance Criteria should state intent but not a solution (e.g., “A manager can approve or disapprove
an audit form” rather than “A manager can click an ‘Approve/Disapprove’ radio button to approve an
audit form”). The criteria should be independent of the implementation. Ideally, the phrasing should be
the same regardless of target platform.

Acceptance Criteria are required for all Features and User Stories.

Acceptance Criteria must be defined before Features or User Stories are worked by the

implementation/development team.

Acceptance Criteria should be complete before Release Planning and Sprint Planning.

Acceptance Criteria are documented in JIRA:

• Acceptance Criteria are stored in the program/team backlog

• Acceptance Criteria are documented in the description field of a Feature below the benefit

statement

• Acceptance Criteria are documented in the description field of a User Story below the persona

description

Examples of Acceptance Criteria:

Feature: Developers can use published API's

Acceptance Criteria:

 Developer is able to invoke a published API
 Developer is notified of invalid key usage
 IAM access-based roles are enforced

User Story: As an Administrator, I want to be able to create User Accounts so that I can grant users

access to the system.

Acceptance Criteria:

 As an Administrator, I can create User Accounts.
 I can create a User Account by entering the following information about the

User: a. Name; b. E-mail address; c. Phone Number; d. License Number

 IAE Agile Framework

A-4 | P a g e

(Power/Basic/None); e. Account Status (Active/Inactive); f. Reports to (from a
list of "Active" Users)

 I cannot assign a new User to report to an “Inactive” User
 I cannot assign a new User to report to a User if it creates a cyclical

relationship (e.g., User 1 reports to User 2, who reports to User 1)
 The system notifies me that it sent an e-mail to the new User's e-mail address,

containing a system-generated initial password and instructions for the person
to log in and change the password.

 I am able to verify with the intended recipient of the e-mail that it was received.

User Story: As a Level 0 Admin, I want to view a list of departments so that I can assess my realm of
responsibility.

Acceptance Criteria
 I can see a list of departments that I am authorized to see
 I can see summary department information to include name and code

User Story: As Level 1 Admin, I can see information about the department I am assigned to.

Acceptance Criteria (using Behavior-Driven Development (BDD) format)
 AC1:

Given I am an Level 1 Admin
When I am on FH home page
Then I see my department information: department name, code

 AC2:
Given I am an Level 1 Admin

And I am on FH home page
When I select my department name
Then I see my department detail information: department name, code, point of
contact (name, e-mail, phone number)

SPLITTING EPICS, FEATURES, AND USER STORIES

(from Scaled Agile Framework; Humanizing Work, 2009)

Epics must be split into Features to drive actual implementation. Features and User Stories may need to
be decomposed into smaller parts to in order to be implemented within a release or a Sprint. Below are
methods for splitting Epics, Features and User Stories, along with examples:

1. Product/Subsystem/Component: Epics often affect multiple products, subsystems or large
components. In such cases, splitting by these aspects can be an effective implementation
technique.

Example: Allow multiple user profiles

a. Allow multiple profiles in the external website.
b. Allow multiple profiles in the admin system.

http://www.scaledagileframework.com/feature/
http://35qk152ejao6mi5pan29erbr9.wpengine.netdna-cdn.com/wp-content/uploads/2009/10/Story-Splitting-Cheat-Sheet.pdf

 IAE Agile Framework

A-5 | P a g e

2. Success Criteria: The Epic’s success criteria often provide hints as to how to incrementally achieve
the anticipated business value.

Example: Implement new location artifacts in search results. Success Criteria: a) Locations
should provide additional filtering methods when other disambiguation methods aren’t useful;
b) Provide detailed location of a person.

a. Provide state information in the search.
b. Implement compound location: state and city.

3. Major Effort First: Sometimes a requirement can be split into several parts, where most of the
effort will go toward implementing the first one.

 Example: Provide room reservation system.

a. Add ability to reserve recurring reservations.
b. Implement multi-location reservation capability.

4. Simple/Complex: Capture the simplest version of the requirement and then add additional
requirements for all the variations and complexities.

 Example: Implement Single Sign On (SSO) across all products in the suite

a. Implement SSO management capability in our simplest product
b. Implement SSO in our most complex product

5. Variations in Data: Data variations and data sources are another source of scope, complexity and
implementation management.

 Example: Internationalize all end-user facing Web pages.

a. Implement in Spanish.
b. Implement in Japanese.
c. Prioritize the rest by current market share.

6. Market Segment/Customer/Class of User: Segmenting the market or customer base is another way
to split a requirement. Address the one that has a higher business impact first.

 Example: Implement customer feedback opt-in functionality.

a. Implement for current partners.
b. Implement for all major marketers.

7. Nonfunctional Requirements (NFRs): Split Epics by implementing the initial capability first and then
incrementally injecting improvements in system qualities (NFRs such as security, reliability,
maintainability, scalability and usability).

 Example: Provide access to vendor marketplace

a. Access is provided to all registered users.
b. Vendor marketplace can be accessed within 3 seconds.
c. Vendor profile data can only be accessed by account owner.

8. Risk Reduction/Opportunity Enablement: Given their scope, Epics can be inherently risky. Use risk
analysis and conduct the riskiest parts first.

 IAE Agile Framework

A-6 | P a g e

 Example: Implement filtering of search results by complex user-defined expressions.

a. Implement negative filtering.
b. Implement filtering expressions with logical operations.

9. Use Case Scenarios: Use cases can be used in Agile to capture complex user-to-system or system-
to-system interaction. Split according to the specific scenarios or user goals of the use case.

 Example: People search functionality.

a. Goal 1: Find connection to a person.
b. Goal 2: Find connection to a company.
c. Goal 3: Distinguish storing and weak connections.

10. Workflow Steps: Features/User Stories may have multiple steps in order to complete a Web feature
on the website, such as create content, review content, approve content and publish content.

Example: As a content manager, I can publish a news story to the corporate Website.

a. I can publish a news story directly to the corporate Website.
b. I can publish a news story with editor review.
c. I can publish a news story with legal review.

11. Business Rule Variations: Features/User Stories may require different business rules that will be
implemented.

Example: As a user, I can search for flights with flexible dates.

a. n days between x and y
b. a weekend in December
c. ± n days of x and y

12. Data Entry Methods: Features/User Stories implement different ways to enter data.

 Example: As a user, I can search for flights between two destinations.

a. Using simple date input
b. Using a fancy calendar UI

13. Defer Performance: Implement different levels of performance

 Example: As a user, I can search for flights between two destinations

a. Slow – just get it done, showing a “searching” animation
b. In under 5 seconds

14. Operations (e.g. CRUD): Separate create, read only, update, and delete operations

 Example: As a user, I can manage my account.

a. I can sign up for an account
b. I can edit my account settings
c. I can cancel my account

 IAE Agile Framework

A-7 | P a g e

15. Break Out a Spike – Conduct a spike to help understand the technical feasibility before
implementation.

 Example: As a user, I can pay by credit card.

a. Investigate credit card processing
b. Implement credit card processing (as one or more stories)

DEFINITION OF READY

Definition of Ready (DoR) is a set of agreements that lets everyone know when Release Planning can be
started, when a Feature is ready to be implemented, when Sprint Planning can be started, and when a
User Story is ready to be implemented by the development team.

The figure below lists Definition of Ready for Release Planning, Features, Sprint Planning, and User
Stories. These definitions can be tailored during the Release and Sprint Planning ceremonies.

TABLE 10: DEFINITION OF READY

DEFINITION OF READY

User
Story

A User Story is ready when:

 The business value is articulated using the user story format

 It meets INVEST (is Independent, Negotiable, Valuable, Estimable, Small and
Testable Guidelines)

 It is small enough to finish within a sprint

 The description includes:
o Acceptance criteria

 describes/defines when it is done
o Performance criteria

 e.g., users/load, response time, retention, etc.
o Other DoD criteria

 e.g., reviews, artifacts, compliance/regulatory requirements, etc.
o External dependencies identified (if applicable)
o External SME identified with contact info e.g., for coordination, reviews,

discussions

 The story is prioritized

 Other items are known &/or ready enough for building to begin:
o Design artifacts

 e.g., UI, DM/DB, etc.
o Infrastructure

 e.g., dev/QA/integration/staging/prod environment, continuous
integration, permissions, etc.

 The team understands the intent, and knows how to demo the story

 The person accepting the story is identified

 IAE Agile Framework

A-8 | P a g e

DEFINITION OF READY

Feature A Feature is ready when:

 The Business value is articulated

 Feature can fit in a Release

 Feature is prioritized

 Has Owner identified

 The Feature follows the appropriate format:
o Name: Action verb followed by a short phrase
o Benefit statement:

 Who benefits
 What the benefit is

o Acceptance criteria
 describes/defines at a high-level when it is done

o Other information as applicable:
 DoD criteria met
 External dependencies identified
 External SMEs identified, with contact info

 Other items are known and/or ready enough:
o Architecture artifacts

 information architecture, UX, conceptual architecture, etc.
o Infrastructure

 environments, etc.

 The team understands the intent

 A decomposition strategy has been determined
o e.g., what splitting pattern is best for breaking it down into smaller items

Release
Planning

We are ready for Release Planning when:

 The Facility is ready
o Room reserved and set up
o Work space/surfaces
o Supplies (e.g. sticky notes, flip-charts, markers/pens, string, paper roll, etc.)
o Technology (phone, network/Internet, PCs, etc.)
o Collaboration tools (video, screens, virtual meeting space, etc.)

 The Participants are ready
o Attendees invited and ready to participate
o Attendees know and understand their role, and are ready to participate
o Participants know and understand the expected outcomes of planning

 The Content is ready
o Agenda
o Business Context

 Includes business drivers
o Product Vision

 Includes release objectives

 IAE Agile Framework

A-9 | P a g e

DEFINITION OF READY

 presented by product management
o Architecture Vision

 Includes description of the architecture needed to enable the
business objectives

o Release Objectives
o Roadmap
o Release Backlog with prioritized Features
o All Features targeted for the release are ready (i.e., meet DoR for a Feature)

Sprint
Planning

We are ready for Sprint Planning when:

 Business user story is written using INVEST criteria

 Business user story contains acceptance criteria

 Sprint backlog is prioritized

 The Sprint Backlog contains all potential work for the upcoming sprint
o i.e., no hidden work
o items are targeted for the Sprint but not yet committed

 Sprint objectives/goals are defined

 The team capacity for the Sprint is calculated

 All items targeted for the Sprint are ready
o i.e., meet DoR for a User Story

DEFINITION OF DONE

The Definition of Done (DoD) defines all steps necessary to deliver a completed product with the best
quality possible. DoD is a tool for bringing transparency, related more to a quality of a product than its
functionality. DoD requires Agile teams to adhere to a common understanding of completion before
moving the work in a potentially releasable state. The figure below lists Definitions of Done at the
Release level, Feature level, and User Story levels. These definitions can be tailored during the Release
Planning ceremony.

 IAE Agile Framework

A-10 | P a g e

FIGURE 9: DEFINITION OF DONE

Release
•All features for the releasable

set are done and meet
acceptance criteria

•End-to-end system integration
and system/performance
testing done

•Full regression testing done;
automated where practical

•No must-fix defects

•User, release, installation
documentation complete

•100% of features are
developed with an
Infrastructure-as-Code
implementation

•100% of code is open source-
able and available in GitHub

•Platform can be built by any
third party using IaaS code
base

•Feature set accepted by
Product Management

Feature
•Features meet acceptance

criteria

•All stories for the features are
done

•Code deployed to QA/Staging
and integration tested

•Functional regression test
complete; automated where
practical

•Non-Functional Requirements
met*

•No must-fix defect

•Documentation related to the
Feature has been updated

•Feature demonstrated in
Release Demo

•Feature included in build
definition and deployment
process

•Feature/s accepted by the
Product Owner/Program
Managers

User Story
•Automated unit test coverage

•Stories satisfy acceptance
criteria

•Unit tests and acceptance tests
passed

•Cumulative unit tests passed

•NFRs* (508, FISMA, Agile
Framework, EA Framework,
API standards, Coding
standards, UX standards) met

•Code checked in, merged into
mainline, and publish to code
repository

•Coding Standards followed

•Code peer reviewed

•Code is deployable to a
production environment

•Documentation related to the
user story has been updated

•No must-fix defect

•Story accepted by product
owner

 IAE Agile Framework

A-11 | P a g e

APPENDIX A2: EPIC VALUE STATEMENT

Forward Looking Position Statement

For <Customer>

Who <do something>

The <solution>

is a <something – the “how”>

That <provides this value>

Unlike <competitor, current solution or non-existing solution>

our solution <does something better – the “why”>

Scope

Success Criteria: (empty)

In Scope: (empty)

Out of Scope: (empty)

NFRs: (empty)

FIGURE 10: EPIC VALUE STATEMENT TEMPLATE

 IAE Agile Framework

A-12 | P a g e

APPENDIX A3: ESTIMATION TECHNIQUES

There are three techniques for estimating Features, each having an increasing level of precision.

 Preliminary Relative Estimate - simply provides an initial, rough estimate. With this technique,
use relative estimating to compare the relative size of one Feature to another.

 Gross Absolute Estimate - uses historical comparisons to provide a bit more accuracy. This
estimation technique compares new Feature size to the story points required to deliver
comparable Features in prior periods.

 Derived Absolute Estimate - most accurate type of estimate where Features are broken down
into stories and the individual stories are estimated. Those estimates are summed across teams
to arrive at the Feature level estimate.

Feature estimates can be rolled up into Epic estimates in the portfolio backlog. Each of these techniques
can be used to estimate job size, the denominator in the Weighted Shortest Job First (WSJF)
equation. Keep in mind though, that as story estimates are rolled up to Feature and Epic estimates, the
level of precision decreases. Spikes can always be used to provide additional analysis in order to further
understand the solution and come up with more accurate estimates.

RELATIVE ESTIMATION
Relative estimation is one of the several distinct flavors of estimation used in Agile teams. It consists of
estimating tasks or User Stories, not separately and in absolute units of time, but by comparison or by
grouping items that are equivalent. When adopting Agile as a new technique for a team, frequently
there will be a large backlog of Stories that need to be estimated all at once. One of the biggest
advantages of Agile estimation is that Stories are estimated relative to each other, not on the basis of
hourly or daily effort. It’s usually clear to a team, regardless of their level of experience, if one story is
going to be more difficult than another, even when nobody has any idea how long it may take to
complete individual Stories. But going through the process of individual point estimation for a huge list
of Stories can be daunting. Relative mass valuation is a quick way to go through a large backlog of
Stories and estimate them all as they relate to each other.

To use this approach:

 Write up a card for each Story.

 Set up a large table so the Stories can be moved around easily relative to each other.

 Pick any Story to start, and then get the team to estimate whether they think it is small,
medium, or large.

 If it’s a large Story, place it at one end of the table. If it’s a small Story, it goes at the other end
of the table. A medium Story goes in the middle. Now select the next Story and ask the team to
estimate if it’s more or less effort than the one that you just put down. Position the Story card
on the table relative to the previous card, and go to the next card.

 It’s possible to go through 100 or more backlog Stories and estimate their relative effort in as
little as an hour.

 IAE Agile Framework

A-13 | P a g e

 The next step is to assign points based on the position of the Stories on the table. Start with the
easiest Story that is worth assigning points to, and call it a 1.

 Then move up the list of cards, assigning a value of 1 to every Story until you get to one that
seems at least twice as difficult as the first one. That Story gets a 2.

 You may need to remind the team not to get caught up in the fine details. The idea is to get a
rough point estimate, not a precise order.

 Ultimately, any Story may be completed in any order based on the business value and priority
assigned by the Product Owner, so all the team needs to estimate is how many points one Story
will take relative to another.

T-SHIRT SIZES
Using numbers is the most common approach for estimating points, but sometimes teams find
themselves overanalyzing when trying to arrive at a number of points. If you notice that team members
are getting caught up in the idea that the number of points associated with a story has anything to do
with the number of hours involved in delivering the value of that story, it may be more effective to
switch to a non-numerical system like T-shirt sizing.

 With T-shirt sizing, the team is asked to estimate whether they think a Story is extra-small,
small, medium, large or extra-large. By removing the implied precision of a numerical score, the
team is free to think in a more abstract way about the effort involved in a Story.

 There are some practical issues to consider when adopting T-shirt sizing for Story estimation.

 For one, non-numerical scales are generally less granular. While that can speed up the voting
process by reducing the number of options, it may also reduce the accuracy of velocity
estimates.

 In addition, the ability to compare Stories with each other can be a little bit more complicated,
since there is no clear mathematical relationship between a medium and an extra-small.

 T-shirt size scales also require extra effort on the part of the person coordinating the Agile
process. The T-shirt sizes need to be converted to numerical values for the sake of tracking
effort over time and charting an estimated velocity for the team.

 For that reason, while T-shirt sizes can be very effective for teams just starting out with Agile,
eventually it’s a good idea to move the team toward a more rational numerical scale.

PLANNING POKER
Planning poker is a game that team members can play during planning meetings to make sure that
everybody participates and that every voice is heard.

 To begin, each team member is given a set of cards with numbers on them. The numbers are
usually ordered from 0 to 21 using the Fibonacci sequence: 0, 1, 2, 3, 5, 8, 13, and 21.

 Then each story is read aloud. After each story is presented, everybody on the team is asked to
hold up the card showing the level of effort that they believe this story represents for the team.

 IAE Agile Framework

A-14 | P a g e

 Initially the estimates may be all over the map, but after a while the team will get a sense of
how much effort they all estimate is associated with a typical type of Story.

 Once all the votes are in, the team members with the lowest and highest estimates explain why
they chose their scores.

 Frequently, experts with detailed knowledge may be able to tell the rest of the team why a
certain story is actually much easier than they thought, or why it may be more difficult than it
first appears because of unexpected requirements.

 Through this process, everybody on the team learns more about what’s involved in estimating
Stories both inside and outside of their specialties, increasing knowledge sharing across the
entire team.

 With planning poker, the numbers are significant. A story estimated as a 2 should be about one
fourth as difficult as a story estimated as an 8.

 Stories estimated at 20 or higher may be so large that they need to be broken down into smaller
Stories before they can be attempted.

 Stories estimated at 1 represent the smallest unit of work.

 IAE Agile Framework

A-15 | P a g e

APPENDIX A4: PRIORITIZATION TECHNIQUES

The following sections describe prioritization techniques in greater detail.

Weighted Shortest Job First (WSJF)

One of the most critical and difficult aspects of keeping an Agile development effort operating as
efficiently as possible, is the coordination and scheduling, and hence sequencing, of work to be
completed in releases and sprints. To assist in this effort, items in the backlog are prioritized so that IAE
is getting the most value out of the work being accomplished. This relies on the expectation that items
in the backlog are accurately prioritized. IAE uses the WSJF technique for prioritizing Epics and Features
in the backlog.

The WSJF is calculated as the Cost of Delay (CoD) divided by job duration. Jobs that can deliver the most
value (CoD) and are of the shortest duration are selected first for implementation. The following factors
contribute to CoD:

User-Business Value: Do our users prefer this over that? What is the revenue impact on our
business? Is there a potential penalty or other negative impact if we delay?

Time Criticality: How does the user/business value decay over time? Is there a fixed deadline?
Will they wait for us or move to another solution? What is the current effect on customer
satisfaction?

Cost of Delay = User Business Value + Time Criticality

WSJF = Cost of Delay / Job Size

It’s not essential that these estimates are absolute. We just need to be able to compare backlog items
relative to each other; therefore, we can use Fibonacci numbers to estimate the relative cost of delay
just as we did for story point estimation. Job duration can be calculated by using the readily available
job size, which is calculated for Features (as Feature Size) and Stories (as Story Points) and then stored in
the backlog in JIRA. Job size can be estimated for Epics using the Fibonacci method.

Once these values are calculated, a spreadsheet can be used to determine the item with the highest
WSJF.

TABLE 11: SAMPLE SPREADSHEET FOR CALCULATING WEIGHTED SHORTEST JOB FIRST

Backlog Item User / Business
Value

Time Criticality Job Size WSJF

Integrate Data Lake
with Landing Page

1 1 3 0.67

User Roles
Authorization for
Marketplace

3 5 5 1.6

 IAE Agile Framework

A-16 | P a g e

To calculate WSJF, the team rates each backlog item relative to one another for each CoD variable. With
relative estimating, do one column at a time, set the smallest item to a “one,” and then set the others
relative to that item. Higher numbers represent higher value and criticality. When all columns are
estimated, divide the CoD by the Job Size. Job Size is a relative estimate of the duration of each item in
the backlog. Finally, the item with the highest WSJF also has the highest priority.

OTHER PRIORITIZATION TECHNIQUES

Below are other Agile prioritization techniques:

 Monopoly Money
o Monopoly Money is a technique that involves giving the customer "monopoly money"

or "false money" equal to the amount of the project budget and asking them to
distribute it among the User Stories under consideration. In this way, the customer
prioritizes based on what they are willing to pay for each User Story.

 100-Point Method
o The 100-Point Method was developed by Dean Leffingwell and Don Widrig (2003). It

involves giving the customer 100 points they can use to vote for the features that they
feel are most important.

 Kano Model
o Kano Model was developed by Noriaki Kano (1984) and involves classifying features or

requirements into four categories based on customer preferences: Exciters/Delighters,
Satisfiers, Dissatisfiers, and Indifferent.

 Requirement Prioritization Model
o Requirements prioritization is an essential mechanism of Agile development approaches

to maximize the value for the clients and to accommodate changing requirements.

 Relative Prioritization

o You use planning, ranking and priority fields to specify which work the team should

complete first. If you rank user stories, tasks, bugs and issues, all team members gain an

understanding of the relative importance of the work that they must accomplish.

Ranking and priority fields are used to build several reports.

o You rank and prioritize work items when you review the backlog for a product or

iteration. For more information, see Rank the Product Backlog and Iteration Backlog.

 IAE Agile Framework

A-17 | P a g e

 APPENDIX A5: WSJF TEMPLATE

FIGURE 11: WSJF PRIORITIZATION MATRIX

 IAE Agile Framework

A-18 | P a g e

APPENDIX A6: AGILE CEREMONIES

Below is a list of ceremonies used in the Agile process along with their purposes, key participants,
inputs, outputs/deliverables, frequency with which they are held, and the tools used during the
ceremony.

TABLE 12: AGILE CEREMONIES

Ceremony Purpose Key Participants Inputs Outputs /
Deliverables

Frequency Tools

PORTFOLIO LEVEL

GOVERNING
BODY MEETING

 Provide overall
governance

 Announce new
business initiatives

 Define/Refine
strategic themes

 Provide strategic
direction for IAE
process and
product
development

 Review Portfolio
Backlog
implementation
status

 Executive

Steering

Committee

members

 Portfolio

Management

Team

 Epic Owners

 Problems

with existing

solutions

 Epics

awaiting

approval

 Strategic

Priorities

 New initiatives

and

opportunities

 Proposed Epics

 Go/No Go

Decisions on

new Epics

Quarterly JIRA

PORTFOLIO
MANAGEMENT
MEETING

 Identify Epic
Owners

 Make Go/No Go
decision on
program driven
initiatives/propose
d Epics

 Allocate resources
to implement high
priority Epics

 Prioritize approved
Epics using WSJF

 Identify and
approve High-
Level Portfolio
milestones

 Guide program
execution and
governance

 Review portfolio,
Release, and Sprint
implementation
status and metrics

 Resolve

 Epic Owners

 Enterprise
Architect

 IAE PMO

 Portfolio
Management
Team

 Portfolio
Backlog

 Portfolio,
Program, and
Team level
status,
metrics, and
impediments

 Refined and
Prioritized
Portfolio
Backlog

 Portfolio Vision

 Corrective
action and
resolutions to
impediments

 Program Epics

Monthly or

As-needed

JIRA

 IAE Agile Framework

A-19 | P a g e

impediments

PROGRAM LEVEL

PRODUCT

MANAGEMENT

MEETING

 Shepherd

proposed Epics

until ready for

approval

 Review and

analyze Epic value

statements and

lightweight

business cases

 Discuss solutions

and alternatives

 Establish viability,

measurable

benefit,

development and

deployment

impact, potential

availability of

resources

 Establish

preliminary

estimates of

opportunity,

establish effort

and cost of delays

 Drive collaboration

amongst key

stakeholders

 Provide

quantitative data

as basis for

decision making

 Provide

recommendations

to the Portfolio

Management

Team on new Epics

 Define and

prioritize the

Program Backlog

 Define and

communicate the

Program Vision

 Enterprise

Architect

 Product

Management

Team

 RTE

 System Teams

 IAE PMO

representatives

 New

initiatives

and

opportunities

 Proposed

Epics

 Program

Epics

 Lightweight

Business Case

 Epic Value

Statement

 Epic Success

Criteria

 Prioritized

Program

Backlog

Features and

priorities

 Program Vision

 Release

Roadmap

Bi-weekly or

as-needed
JIRA

 IAE Agile Framework

A-20 | P a g e

and Roadmap

 Work with the

Portfolio

Management

Team to

communicate

release objectives

and Epics

 Establish benefits

and acceptance

criteria for product

features

 Drive Release

content via

prioritized features

PRE-RELEASE

PLANNING

MEETING

 Review the

Program Backlog

 Add, revise or

remove Program

Epics and/or

Features

 Prioritize Program

backlog using

WSJF

 Review and

approve proposed

Release Roadmap

 CCB: 24 CFO

Agents

 Program

Management

 RTE

 Release

Roadmap

 Release

Roadmap with

a list of

approved

Features for the

next release

Quarterly or

as needed

JIRA

RELEASE

PLANNING

 Ensure cadence &

synchronization to

assure value

delivery

 Establish

committed

objectives for the

next Release (by

finalizing Features

for the release)

 Ensure a realistic

implementation

plan (estimate

Features, identify

and resolve

program-wide

dependencies and

impediments)

 Establish

transparency and

collaboration

 RTE

 Product

Management

 Release

management

 PMO

 DevOps/IV & V

 Vendors

 Program

Vision

 Release

Roadmap

 Features

backlog

approved by

CCB

 Release

objectives

 Prioritized

Team Backlog

 Features

sequenced in

individual

sprints

 Final Release

Roadmap and

Schedule

Quarterly JIRA

 IAE Agile Framework

A-21 | P a g e

across the teams

and organization

(agree on high-

level release

schedule, and

secure team’s

commitment to

the release,

release confidence

vote)

SCRUM OF

SCRUMS

 Collaboration

among Scrum

Masters to discuss

their work,

focusing especially

on areas of

overlap,

dependencies and

integration

 RTE

 Scrum Masters

(Vendors)

 Team update,

dependency/

impediments

 Planned

accomplishments

 Resolution to

impediments

Once a week

or as needed

JIRA

PRODUCT

SCRUM OF

SCRUMS

 Collaboration

among Product

Owners to discuss

their work,

focusing especially

on areas of

overlap,

dependencies and

integration

 RTE

 Product Owners

 Team update,

dependency/

impediments

 Planned

accomplishments

 Resolution to

impediments

Twice a week

(Wed,

Friday), or as

needed

JIRA

RELEASE DEMO Provide the

program-level

view of all new

Features delivered

by Agile Teams

 Held at the end of

each release, and

optionally at the

end of each sprint

when new

Features are

completed

 Product

Management

 System Teams

 Enterprise

Architect

 Epic Owners

 RTE

 Scrum Masters

 Agile Teams

 DevOps & IV & V

 Working

software with

developed

Features

 Customer

feedback on

the demo

Quarterly System

with

Working

Software

RELEASE

RETROSPECTIVE

 Engage in the

Inspect and Adapt

process to:

o Evaluate

performance of

current release

o Conduct

retrospective

 Product

Management

 System Teams

 Enterprise

Architect

 Business Owners

 RTE

 Scrum Masters

 Release

Metrics

 Corrective

Action Plan

 Set of

improvement

user stories

Quarterly JIRA

 IAE Agile Framework

A-22 | P a g e

and problem-

solving

workshop

o Reflect how

future releases

can be more

effective

 Agile Teams

 DevOps & IV & V

TEAM LEVEL

TEAM

BACKLOG

GROOMING

 Review Team

Backlog &

Implementation

status

 Ensure that

Acceptance

Criteria exist for

each story

 Verify Story

estimates

 Plan to

build/maintain

Development

Infrastructure

 Plan to

build/maintain

Architectural

Runway

 Prepare for Sprint

Planning

 Product Owner

 Scrum Master

 Agile Team

 Team backlog Refined Team

Backlog

Weekly or as

needed

JIRA

SPRINT

PLANNING

 Time-boxed

meeting to commit

user stories for the

Sprint

 Discuss stories and

estimate story

points

 Product Owner

 Scrum Master

 Agile Team

 Team Backlog

 Release

objectives

 Team

Velocity

 Sprint Goals

 Committed

Sprint Backlog

 Task list

Bi-Weekly JIRA

DAILY SCRUMS Team shares

information about

previous day’s

progress

 Coordinate current

day’s activities

 Identify

dependencies and

report

impediments

 Product Owner

 Scrum Master

 Agile Team

 Individual

activities,

dependency/

impediments

 Activities

coordinated

across the team

 Impediments

identified

Daily N/A

 IAE Agile Framework

A-23 | P a g e

SPRINT DEMO

 Demonstrate

progress to

Program

Management and

other stakeholders

 Demonstrate

completed user

stories

 Review sprint

metrics

 Scrum Master

 Product Owner

 Agile Team

 Other

stakeholders

 Working

Software

 Sprint metrics

 Completed

sprint backlog

 Product Owner

feedback

 Accepted and

Rejected

stories

 Enhancement

list

Bi-Weekly The

System

with

Working

Software

SPRINT

RETROSPECTIVE

 Team reflects on

how to become

more effective

 Discuss what went

well, what didn’t,

and what the team

can do better next

time

 Scrum Master

 Agile Team

 Product Owner

 Sprint metrics

 PO,

stakeholder

feedback

 Action items

status from

previous

sprint

 Lessons learned

report

 What/how to

do better next

time

 Root cause

analysis report

 Action items for

upcoming

Sprint

 Owner of each

action item

Bi-Weekly JIRA

 IAE Agile Framework

A-24 | P a g e

APPENDIX A7: AGILE TOOLS

This section describes the two key Atlassian tools (JIRA and Confluence) that are used to help manage
the Agile process. Attachment GSA IAE CSP Architecture (listed in the front matter of this document)
contains a list of the tools and software provided by the IAE Common Services Platform.

 JIRA

JIRA is the Agile Lifecycle management tool for IAE currently being used as a Backlog Management tool.
JIRA does much more than just track backlog items, though: It allows Agile Teams to manage IAE
development via Sprints and releases from the task level all the way up to the Portfolio Epic level.

Please refer to the IAE JIRA Standard Operating Procedures (SOPs) document for additional information
on how to use all of the JIRA tools to manage the Portfolio, Program and Team backlogs.

CONFLUENCE

Atlassian’s Confluence is a collaboration tool that provides IAE with a centralized repository allowing
users to organize, create, share, discuss and search project data and documents. Confluence is a wiki,
software that runs on a server and publishes Web pages that you can read via a Web browser.

Some of the collaboration capabilities that Confluence provides include:

• Share meeting notes
• Share files
• Make collaborative decisions
• Share links
• Assign tasks
• Share calendars

Confluence is also an Agile development tool that allows users to:

• Store requirements
• Create JIRA issues
• Link to JIRA
• Publish reports
• Track Releases
• Create Retrospective templates
• Store lessons learned

Finally, Confluence is a knowledge base with a simple setup. It allows users to:

• Create knowledge articles
• Share knowledge and best practices internally within teams or organization

 IAE Agile Framework

A-25 | P a g e

APPENDIX A8: AGILE ENGINEERING PRACTICES

The following Agile Engineering Practices support the development of high quality software. These
practices are adopted from the SAFe Code Quality practices.

Continuous integration

Continuous Integration is the software development practice that requires team members to integrate
their work frequently.

 Every developer integrates at least daily, which leads to multiple integrations each day.

 Integrations are verified by an automated build that runs automated regression tests to detect
integration errors as quickly as possible.

 This approach leads to significantly fewer integration problems and enables development of
high quality software more rapidly.

TEST FIRST

“Test First” adheres to both Acceptance Test-Driven Development (ATDD) and Test-Driven Development
(TDD) practices.

 With ATDD, the acceptance tests are built before developers begin coding.

 With TDD, developers build the test first and then develop functionality until the code passes
the test.

 This is typically followed by refactoring the code to improve maintainability.

 As the software grows, new tests are added to the suite of tests that are run during the
Continuous Integration process to ensure a functioning system is continuously maintained.

 This practice requires testing to be automated.

 The types of testing executed during Continuous Integration include but are not limited to the
following:

o Unit tests
o Functional tests
o Continuous inspection of code quality
o Security vulnerability tests

 Characteristics of good unit tests include fast execution, isolated (not dependent on other tests),
and ability to leave the system under test unaltered.

 Continuous Integration also applies to system level testing and is executed at least once every
sprint.

 System testing includes end-to-end system testing and performance testing.

 All test code, scripts and data are required to be placed under version control in the code
repository.

REFACTORING

Refactoring is the practice of clarifying, simplifying and improving the existing design of the code as part
of the Agile software development process.

http://www.scaledagileframework.com/code-quality/

 IAE Agile Framework

A-26 | P a g e

 Refactoring prevents the system from becoming unmaintainable as the software grows.

 This practice keeps the code easy to maintain and extend.

 Refactoring is only possible if the automated tests are developed following the Test First
method.

 A comprehensive set of regression tests is run after each step during refactoring to provide
immediate feedback to the developer.

PAIR WORK

Pair Work is inspired by eXtreme Programming’s (XP’s) pair programming practice where two
programmers work together in front of a workstation to enable continuous collaboration, knowledge
sharing, and peer review of the code.

 Pair Work expands on this practice in that team members are encouraged to work together in
pairs whenever it makes sense.

 Pair Work could be between developers, testers, business analysts, and other team members
when collaboration and knowledge sharing would help deliver value faster.

COLLECTIVE OWNERSHIP

Collective Ownership encourages everyone to contribute to the project.

 Any developer can feel free to change or refactor any line of code to add functionality or
improve the design.

 This practice avoids the bottleneck situation when only one developer has in-depth
understanding of a section of the code.

 This convention is made possible by the comprehensive set of unit tests that gives the
developers the confidence to touch the code written by others.

DEVOPS
The IAE lifecycle will be implemented based on the IAE DevOps standards (TBD).

 DevOps is a new term that promotes collaboration between development and operations staff
throughout all stages of the development lifecycle through the deployment and delivery of
value to the end user.

 The IAE DevOps team will establish and automate the entire environment creation and
deployment process.

 Deployment readiness is continuously maintained to enable release of value based on customer
demand.

 IAE Agile Framework

A-27 | P a g e

APPENDIX A9: AGILE ARCHITECTURE PRACTICES

Architectural Epics flow through the same IAE Agile Framework processes as Business Epics. The only
difference is that Business Program Managers manage business Epics and Architecture Program
Managers manage architecture Epics.

An Architectural Runway provides a roadmap for implementing architectural features. The key
features are:
• Architectural teams iterate like every other Agile team on the program.
• Credit goes to working code, not models and designs.
• Time is of the essence. It should take no more than a few iterations to prove the new architecture.
• Architecture code needs to stay ahead of business features dependent on new architecture.

http://www.scaledagileframework.com/architectural-runway/

 IAE Agile Framework

A-28 | P a g e

APPENDIX A10: AGILE ARCHITECTURE PRINCIPLES

IAE adheres to SAFe Architectural Principles that promote “every team deserves to see the bigger
picture” and “every team is empowered to design their part.”

PRINCIPLE 1: DESIGN EMERGES. ARCHITECTURE IS COLLABORATION
While an Agile Manifesto principle states “the best architectures, requirements, and designs emerge
from self-organizing teams,” intentional architecture has a place in large, complex systems to provide
guidance and technical governance to Agile Teams, while still empowering the teams to design their
own parts. (Refer to AE framework documentation for additional information on architectural
framework and standards.)

 Emergent Design: The evolutionary process of discovering and extending the design only as
necessary to implement and validate the next increment of functionality.

 Intentional Architecture: For a large, complex system, it is impossible for teams to anticipate
changes that may well occur outside their environment, nor for individual teams to fully
understand the entire system. The solution is a set of purposefully built architectural artifacts to
enhance the understanding of the requirements to support the solution design and
implementation.

 Collaboration: The right balance of emergent design and intentional architecture drives
effective evolution of the system.

PRINCIPLE 2: THE BIGGER THE SYSTEM, THE LONGER THE RUNWAY
The architectural runway exists when enterprise platforms have sufficient technology infrastructure to
support the implementation of the highest priority Epics and Features in the backlog without excessive,
delay-inducing redesign. In order to achieve some degree of runway, the enterprise must continually
invest in extending existing platforms as well as building and deploying new platforms.
Architecture Epics must be decomposed into architecture Features that are implemented as part of
individual releases. Architecture runway can be exposed to the consumer when sufficient capabilities
exist to support the implementation of near-term business Epics and Features.

PRINCIPLE 3: BUILD THE SIMPLEST ARCHITECTURE THAT CAN POSSIBLY WORK
Agile promotes using the simplest architecture and design that can support current requirements. The
right balance of intentional architecture and emergent design allows for generalization of solution
elements to address common problems at the component, system or enterprise level.

PRINCIPLE 4: WHEN IN DOUBT, CODE, OR MODEL IT OUT
Making good design decisions helps avoid unnecessary refactoring. Use of rapid prototyping and short
spikes provide feedback with objective evidence, which can help solidify the design. Technical teams
can use a healthy mix of spikes, prototyping and modeling to better understand potential impacts prior
to implementation.

 IAE Agile Framework

A-29 | P a g e

PRINCIPLE 5: THEY BUILD IT, THEY TEST IT
Testing system architecture involves testing the system’s ability to meet its larger scale functional,
operational, performance and reliability requirements. To do this, teams must typically build an
automated testing infrastructure that enables ongoing system-level testing. As the system evolves, the
testing approaches, testing frameworks and test suite must evolve with it.

PRINCIPLE 6: THERE IS NO MONOPOLY ON INNOVATION
Architecture is a collaborative effort, which helps foster a culture whereby innovation can come from
anyone and anywhere. One of the responsibilities of the enterprise architect is to foster an
environment where innovation ideas and technology improvements that emerge at the team level are
leveraged in future implementation.

PRINCIPLE 7: IMPLEMENTING ARCHITECTURAL FLOW
IAE will continuously improve the process of implementing large architectural initiatives that impact the
runways of multiple systems. Cross-cutting Architectural Epics must be managed properly through the
Epic Kanban process to support the continuous delivery of business value.

 IAE Agile Framework

B-1 | P a g e

B. PORTFOLIO INFORMATION

APPENDIX B1: PORTFOLIO KEY ROLES AND RESPONSIBILITIES
The following are the key Roles and Responsibilities at the Portfolio Level.

TABLE 13: KEY ROLES AND RESPONSIBILITIES (PORTFOLIO LEVEL)

Role IAE Representatives Responsibility

IAE Governing
Body

 ACE

 PCE

 FACE

 OMB Directives

 OCIO

 Defines Strategic Themes and business objectives that
connect the portfolio to the business strategy

 Elaborates on competitive differentiation from the
current state to a future state

 Participates in business case analysis, cost estimation,
prioritization and Go/No Go decision meetings

Portfolio
Management

Team

 IAE Assistant
Commissioner

 IAE Deputy Assistant
Commissioner

 IAE Directors

 RTE

 Program Portfolio Management has the highest fiduciary
decision-making responsibility

 Executives with market knowledge, technology
awareness, and understanding of financial constraints
and market conditions analyze, justifies business case,
initiatives

 Drives product and solution strategy; manage
investment

 Participates in business case analysis, cost estimation,
prioritization and Go/No Go decision meetings

Epic Owner* Program Manager
(Business/Technical)

 Enterprise Architect

 Owns Business or Architectural epics

 Defines, analyzes, and move selected epics into
implementation

 Works with release trains to realize business benefits of
the epic

 Participates in business case analysis, cost estimation,
prioritization and Go/No Go decision meetings

Enterprise
Architect

 IAE IT Director Works with business stakeholders and system architects
to drive holistic implementation across enterprise

 Drives key initiatives and strategy for maintaining
enterprise architectural runway

 Participates in business case analysis, cost estimation,
prioritization and Go/No Go decision meetings

* IAE business and technical Program Managers wear multiple hats, performing the roles of Epic Owner,
Product Manager and Product Owner.

 IAE Agile Framework

B-2 | P a g e

APPENDIX B2: PORTFOLIO LEVEL PROCESS DETAILS

The following diagram represents the Portfolio Level Process, which is at the highest level in the
framework.

FIGURE 12: PORTFOLIO LEVEL PROCESS

At this level all strategic initiatives, business and technology (architecture) are vetted to ensure that they
align with the overall enterprise strategy to provide the greatest benefit and value for the organization
and its key stakeholders. A comprehensive Portfolio Backlog is created at this level with the input of the
stakeholders. The portfolio backlog is prioritized, and Epics are created after an initial analysis. The final
list of Epics is prioritized, and budget and resources are allocated to the approved initiatives (Epics). The
ART formation is initiated at this level, and Epics are allocated to the ART.

GOVERNING BODY COMMUNICATES NEW INITIATIVES

The Governing Body is responsible for establishing the enterprise vision and strategy direction. The
Governing Body defines strategic themes and new business initiatives that influence Epics evaluation,
program vision, and the roadmap.

These new initiatives have multiple sources including:

 Enterprise strategic themes

 Portfolio vision

 Changes in the marketplace

 Identified need for substantive cost savings or operational efficiencies

 Problems with existing solutions that are hindering business performance.

PORTFOLIO BACKLOG FORMATION

The Portfolio Backlog provides a holding mechanism for the upcoming Business and Architectural Epics.
The creation of all “big business and architectural ideas” are introduced, also known as the

 IAE Agile Framework

B-3 | P a g e

Problem/Solution Needs Identification, from specific, itemized business objectives to the evolving
enterprise business strategy.

Epics and Lightweight Business Cases/Charters provide visibility and economic justification for
upcoming, cross-cutting work. Business or Architectural Epics are defined and analyzed, each supported
by a lightweight business case. Developed by Program Managers, lightweight business cases and
charters provide for reasoning, analysis and prioritization while avoiding over-specificity.

FIGURE 13: EPIC LIGHTWEIGHT BUSINESS CASE

EPIC UNDERSTANDING AND ALTERNATIVES (KANBAN WORKSHOP)

The purposes of the Kanban Workshop are to provide visibility and guide new initiatives through the
Kanban process. The Kanban workshop reviews and analyzes new initiatives, develops Epic value
statements, and develops lightweight business cases. The Kanban Workshop prepares final
recommendations of proposed Epics for final approval by the Portfolio Management Team. Once the
Portfolio Management Team approves an Epic, it is added to the Portfolio Backlog.

 IAE Agile Framework

B-4 | P a g e

All initiatives are captured and fed into the Kanban system by the IAE Portfolio Management team.
Kanban is a method for visualizing and managing work that contains a series of defined states through
which the work moves. There are usually specific Work In Progress (WIP) limits for each state, which
change only as necessary to improve flow. The Kanban system at the Portfolio level is a lightweight
approach for managing the flow of Epics. A Kanban system is used because it provides the following:

 Transparency to the initiatives being developed

 Structure to the analysis and decision making process

 Assurance that expectations for implementation of initiatives align with the realities of capacity
limits

 A mechanism to drive collaboration amongst key stakeholders, and

 A quantitative, transparent basis for decision making.

The Kanban system represents a collaborative effort among IAE Portfolio Management, the Enterprise
Architect and the Epic Owner.

The portfolio Kanban system is composed of five states:

 Funnel
o Initiatives are first captured.
o All ideas are considered, elaboration is not required, and any mechanism can be used

for capturing the idea.
o No WIP limit at this stage since cost of capture is minimal.
o On a periodic cadence, set by the Portfolio Management team, these big initiatives or

Epics are discussed, and the ones that meet the decision criteria are moved to the
Review queue.

 Review
o Justification of Epics.
o Epics are roughly sized.
o A rough estimation of value is established.
o Epic value statements, which provide additional Epic details, are provided.
o Sources of business benefit are identified.
o Review Epics are discussed periodically, and there may even be some very preliminary

investigation performed. Because of the increased investment, WIP limits are imposed.
o Review Epics are assigned a Cost of Delay using the WSJF methodology.
o Those Epics at the top of the queue are pulled into the Analysis state as soon as capacity

is available.

 Analysis
o Requires further analysis and investment.
o Interim Epic Owner is identified who will move the Epic through the Kanban process.
o Active collaboration is initiated between enterprise and system architects, product

management and key stakeholders.
o Analysis of the Epic includes work to determine viability, measurable benefit,

development and deployment impact, and potential availability of resources.
o Exploration of design and implementation alternatives occurs, as well as options for

internal development and/or outsourcing.

 IAE Agile Framework

B-5 | P a g e

o The Epic Owner creates a Lightweight Business Case, which captures the results of the
analysis and determines the priority of each Epic.

o Epics in this queue are WIP-limited due to the fact that required resources (Epic Owner,
Enterprise Architect, and solution development) are scarce as well as the fact that these
Epics are going to require a substantial upcoming investment.

o Based on the results of the business case, the Portfolio Management Team makes a
Go/No Go decision on whether the Epic should move on to the Portfolio Backlog.

 Portfolio Backlog
o Epics approved by the Portfolio Management Team.
o Continuous prioritization of approved Business and Architectural Epics using WSJF.

 Implementing
o Decompose Business and Architectural Epics into features.
o Transition to the Program Team.
o Analyst support on pull (get more Epics from portfolio backlog) basis.
o WIP limited by capacity.

FIGURE 14: KANBAN WORKSHOP WORKFLOW

PRIORITIZATION OF PORTFOLIO BACKLOG (PORTFOLIO BACKLOG GROOMING)

The Portfolio Management Team is responsible for:

 IAE Agile Framework

B-6 | P a g e

 Managing investments

 Driving Epic development

 Monitoring Epic implementation progress

 Grooming and prioritizing Epics in the Portfolio Backlog

The prioritization of Epics ensures that the highest priority Epics are promoted to implementation when
there is sufficient capacity from the ARTs. The Portfolio Management Team provides direction and
guidance on the overall solution strategy for the implementation of Portfolio Epics and the execution of
releases.

As part of the portfolio Backlog Grooming process, the Portfolio and Product Management teams, Epic
Owners and Enterprise Architect review the backlog and prioritize the Epics using the WSJF technique.
The highest priority Epics are pulled from the Portfolio backlog and moved to the Program Backlog for
implementation when a Release Train has available capacity.

 Portfolio backlog
o Approved Epics are added to the Portfolio Backlog as Portfolio Epics by the IAE Portfolio

Management team.
o The backlog is reviewed on a periodic cadence, and when capacity becomes available on

an ART, an Epic can move to implementation.
o Prior to being scheduled for implementation, each Epic goes through additional

reasoning.
o The Portfolio Management Team, along with the Epic Owner and Enterprise Architect,

analyzes the Portfolio Epics and decomposes them into Business and Architecture Epics.
o Epic Owners’ assignments are finalized based on the type of Epic.
o Business SMEs own business Epics, while the Enterprise Architect owns architectural

Epics.
o Perform a final verification of Epic priority using WSJF.
o Highest priority items get pulled from the Portfolio Backlog when there is sufficient

program capacity on one or more ARTs.

PORTFOLIO MONITORING (HEALTH CHECK)

The Portfolio Management Team reviews overall status, dashboards and metrics on the implementation
Epics, Features and the execution of Releases and Sprints. The Portfolio Management Team takes action
to help resolve any impediments escalated from Releases and Teams. Corrective actions are taken to
ensure continuous delivery of value.

The retrospective will address the following:

 What is the status of the current release?

 What impediments must we address to facilitate progress?

 Are we likely to meet the release objectives, and if not, what adjustments are required?

 IAE Agile Framework

B-7 | P a g e

APPENDIX B3: IAE PROGRAM MANAGER PORTFOLIO CHECKLIST

TABLE 14: IAE PROGRAM MANAGER PORTFOLIO CHECKLIST

IAE Program Manager Portfolio-Level Checklist Status

Prior to Approval
Work with stakeholders and subject matter experts to define the epic, its potential benefits,
and establish the cost of delay. Identify business sponsors.

(empty)

Work with the development teams to size the epic and provide input for economic
prioritization based on WSJF.

(empty)

Define epic success criteria (empty)

Shepherd the epics through the Epic Kanban system and create the lightweight business
case.

(empty)

Prepare to present the business case to the Portfolio Management Team for a Go/No Go
decision.

(empty)

 (spacer cell) (empty)

Presenting the Epic
The epic owner has the primary responsibility for presenting the merits of the epic to
Portfolio Management Team and the Governing Body.

(empty)

 (spacer cell) (empty)

 After Approval - Implementation

Work with Product Management to split the epic into Program Epics and features and
prioritize them in the Program Backlogs.

(empty)

Provide guidance to the release train on the epic context of the target features. (empty)

Participate in Release Planning, Release Demo, and Release Retrospective whenever there is
critical activity related to the epic.

(empty)

Work with Agile teams that perform research spikes, create proof of concepts, mockups,
etc.

(empty)

Coordinate and synchronize epic-related activities with functions in sales, marketing, and
other business units.

(empty)

Understand and report on progress of the epic with key stakeholders. (empty)

 IAE Agile Framework

C-1 | P a g e

C. PROGRAM INFORMATION

APPENDIX C1: PROGRAM LEVEL ROLES AND RESPONSIBILITIES

The following are the key Roles and Responsibilities at the Program Level.

TABLE 15: KEY ROLES AND RESPONSIBILITIES (PROGRAM LEVEL)

Role IAE Representatives Responsibility

CCB 24 CFO Agents Reviews product feature list/ proposed Release
Roadmap

 Adds/Removes product feature

 Provides Go/No Go Decision

Product
Management

 IAE Directors

 Program/Product
Owners
(Business/Technical)

 Serves as content authority for the train

 Continuously interacts with customers and
stakeholders to define and prioritize the Program
Backlog

 Owns the Vision and communicates the Roadmap

 Defines product features and acceptance criteria

 Works to optimize feature delivery to balance the
enterprise’s technical and economic objectives

Release
Management

 RTE

 OSM

 IT
Operations/Security

 DevOps

 Vendor PM

 Product Management

 PMO

 Ensures the organization’s release governance are
defined and understood

 Owns release planning

 Facilitates and negotiate release content

 Ensures Inspect & Adapt, improve program productivity,
quality and release process

 Communicates release status

RTE RTE by GSA IT Facilitates release planning readiness and the Release
Planning meeting

 Assists with program execution and tracking of metrics

 Publishes release objectives for visibility and
transparency

 Facilitates Scrum of Scrums and Release Retrospective
meetings

 Escalates impediments and helps manage dependencies

 Ensures collaboration within and across trains

 IAE Agile Framework

C-2 | P a g e

Role IAE Representatives Responsibility

 Promotes program-level code quality best practices

 Drives program-level continuous improvement

 Facilitates deployment of working products

 Manages Program Risk and Mitigation Strategies

System Team Development
Representatives

 Systems Engineering

 IT Security Team

 Deployment/DevOps
team

 Builds the development infrastructure and manages
environments

 Supports full system integration

 Performs end-to-end system and performance testing

 Stages and supports the Release Demo

 Determines and establishes the program branching
strategy

 Assists with build, test and deployment automation
strategies and adoption

 Supports system-level continuous integration

UX/UI Team User Experience
Product Owners

 Provides guidance for a consistent user experience

 Provides Agile Teams with increments of UI design and
UX guidelines to ensure a consistent user experience

 Validates user experience via user testing

Outreach
and

Stakeholder
Management

 OSM members Coordinates with the Product Management team to
incorporate requirements information into the backlog,
derived from Focus Groups

 Owns the IAE branding

 Participates in Release Planning, Release Demo and
Release Retrospective ceremonies

 Participates in Sprint Review

DevOps IT Operations

 DevOps team
 Maintains all environments (Dev/Test/Pre-Prod/Prod)

in product lifecycle to product quality working code

 Automates deployment process and perform
deployment to all environments including production

 Establishes an effective deployment process

 Applies continuous improvement, continuous
integration and continues delivery to the deployment
process

 IAE Agile Framework

C-3 | P a g e

APPENDIX C2: PROGRAM LEVEL PROCESS DETAILS

At the Program level, the ARTs take over responsibility for implementing Epics, Features and User
Stories. All of the ARTs running within the enterprise work in a synchronized cadence. Coordinating
efforts among multiple teams in regular, repeatable, short intervals leads to decreased variability in the
work and results in a more efficient, dependable, reliable and adaptable work product.

The following diagram represents the Program Level Process, which is at the midlevel in the framework.

FIGURE 15: PROGRAM LEVEL PROCESS OVERVIEW

PROGRAM BACKLOG GROOMING

The Program backlog is aligned with the Program level of the enterprise and is the single, definitive
repository for all upcoming work anticipated to advance the ART. The program backlog provides value
to the enterprise by aligning the development team and stakeholders to a common mission via a single
backlog. IAE maintains the program backlog using JIRA.

The sources of the Program backlog include the Portfolio Backlog’s Business and Architectural Epics,
feedback from customers/stakeholders, Architectural Features and inputs from Agile Teams. Epics can
also originate from other sources at the Program level. Epic Owners decompose program Epics into
Features (and possibly sub-Features) and prioritize them using WSJF.

The Product Management team is responsible for developing, prioritizing and maintaining the program
backlog, with the Program Manager being designated the owner of the backlog. System architects
provide architectural input into the program backlog via architectural Features. They work with Product
Management to ensure there is enough runway to meet the needs of the upcoming business Features.
The Product Management team members refine the Program Backlog.

Epics at the Program level are decomposed into Features and sub-Features in the Program Backlog
during the Backlog Grooming process, primarily by the Product Management Team, Epic Owners and the
System Architect, but also with assistance from the System Team, Release Management, and
DevOps/IV&V.

The Backlog Grooming is used to prepare for the Release Planning ceremony. During Backlog Grooming,
existing Features are reviewed and elaborated upon, including defining acceptance criteria and

 IAE Agile Framework

C-4 | P a g e

establishing estimates. Larger Features are evaluated for breaking down into smaller Features or sub-
Features. Features are also evaluated to determine if they need to be decomposed into related
architectural Features. In addition, the capacity that can be allocated for these architectural Features in
upcoming releases is determined. Finally, the Features and Sub-Features in the Program Backlog are
prioritized using the WSJF approach.

CHANGE CONTROL BOARD (CCB) APPROVAL

The CCB, composed of 24 CFO Agents, serves as the content authority that is empowered to decide
what gets implemented on the ART. It reviews, edits and approves Features to be implemented in the
upcoming release via the approval of the Release Roadmap.

Once the Features and sub-Features are defined and prioritized in the Program Backlog, the Product
Management team, in consultation with Agile Teams and the Epic Owner, drafts a release roadmap and
presents it to the CCB for feedback and approval. The Product Management team also communicates
the proposed release roadmap to Release Management, the Outreach and Stakeholder Management
(OSM) Team, and DevOps, and collects feedback. The CCB vets the Feature list, modifying it as
necessary until approval can be obtained.

The Change Control Board has several release types, which are listed in the table below.

TABLE 16: RELEASE TYPES

Release Content Schedule Approver

Major CCB-Approved Features that
are developed in the Release
Increment.

 End of Release

 Completed features is ready to
be deployed into the
production environments

CCB

Minor Incremental Feature
Delivery

 Release valve for
Emergency or Urgent
Change Requests

 Infrastructure components

Scheduled on as needed basis CCB/Product
Management

RELEASE PLANNING

Agile releases run on a three-month cadence of Release Planning -> Implementation -> Release Demo ->
Release Retrospective. Release Planning is the ceremony that ensures the program stays on this rhythm
of continuous development and delivery. It takes place at the beginning of each release. This ceremony
is facilitated by the RTE and supported by all members of the program. This face-to-face ceremony level
sets everyone’s understanding of the program’s vision and roadmap and secures the development
teams’ commitment to the objectives for the upcoming release. The development teams will assess and

 IAE Agile Framework

C-5 | P a g e

mitigate technical dependencies across teams. This high level of collaboration ensures the resulting plan
is realistic and implementable.

Once CCB approval of the release roadmap is obtained, the release planning ceremony can be
conducted. The release planning ceremony is the key event in the release process where the entire
team, stakeholders and business owners meet face-to-face in order to come to an agreement on the
objectives of the upcoming release. The release planning ceremony reinforces a cadence-based
synchronization among ARTs, promotes development of a realistic implementation plan, and establishes
transparency and collaboration across the teams and organization. The meeting is facilitated by the RTE
and uses a standardized agenda that includes a presentation of vision, team planning breakouts, and
commitment to release objectives for the next release cycle. Each team does the following:

 Creates its plan based on the CCB-approved Features list and release roadmap

 Estimates its capacity (velocity for each sprint); develops and refines stories needed to realize
each Feature

 Identifies risks and dependencies

 Develops a set of team objectives, which are aligned to the release objectives.

Identified program risks and impediments are addressed between the entire group and management. A
confidence vote is taken. If agreement cannot be reached, the plan is reworked until participants reach
consensus. The key outputs of the process are the team and release objectives, a release plan with
Features sequenced in individual sprints and related dependencies, and the vote of confidence from the
participants. Following the release planning session, the roadmap is updated, and program Features are
moved to the individual team backlogs to become part of the ARTs.

SCRUM OF SCRUMS (PROGRAM RISK MANAGEMENT)

The Scrum of Scrums is used to monitor the progress of the teams during development of the release
and to manage risk. The RTE, also known as the Chief Scrum Master, facilitates the scrum of scrums
meeting with all the teams’ Scrum Masters. The Scrum of Scrums ensures teams are meeting their
sprint objectives, removing any problems that are causing delays or confusion, and raising the level of
awareness of dependencies between the Agile teams.

 Scrum of Scrums (15 – 30 Minutes)

 A scrum at the program level to gain insights into team progress and program impediments

 Insights gained and program impediments requiring escalation are brought to the Release
Management Meeting

 Who should attend: RTE, Scrum Masters, Subject Matter Experts as needed, Program Managers

 Frequency: Weekly or more frequently, as conditions require
o Recommended to meet two times a week

 Attendance is mandatory. If someone can’t make it, a proxy must attend and report

 Distributed teams – Attend a time when all can call in or attend in person

 The RTE has primary responsibility for communicating any major blocks, challenges, or
impediments to key stakeholders and the Release Management Team

 Checklist:
o What did your team accomplish since the last meeting?

o What will your team accomplish between now and the next meeting?

 IAE Agile Framework

C-6 | P a g e

o Are there any blocking issues?

o Are you about to put a block someone else’s way? (Meet after/Problem solving)

 Affected parties stay for problem solving

 Timebox: As long as it takes

Once a risk is identified, you need to decide what to do with it. The IAE Agile Framework uses ROAM
(Resolved, Owned, Accepted, and Mitigated).

ROAM MODEL

 Resolved – The risk has been answered and avoided or eliminated.
 Owned – The risk has been allocated to someone who has responsibility for doing something

about it.
 Accepted – The risk has been accepted and it has been agreed that nothing will be done about

it.
 Mitigated – Action has been taken so the risk has been mitigated, either reducing the likelihood

or reducing the impact.

RELEASE MANAGEMENT (RELEASE DEMO)

One of the Agile Manifesto principles states that the primary measure of progress is working software.
The IAE Agile Framework prescribes a Release Demo at the end of each release as well as at the end of
each sprint, when Features are completed and can be presented via working software.

The Release Demo provides an integrated, program-level view of all new Features delivered by all the
teams in the most recent iteration. The Release Demo lets the teams showcase their accomplishments
and allows business stakeholders and customers to provide immediate feedback. The Release Demo
also ensures that full and continuous integration takes place frequently. The System Team stages the
Release Demo with support from individual development teams. At the end of a release, a retrospective
is held immediately after the Release Demo to discuss how future releases can be executed more
effectively.

The IAE Agile Framework supports three levels of Production Deployments, enabling continuous delivery
to maximize business value delivery and minimize risk. The Release Management team will coordinate
releases across the enterprise, working with the CCB for Feature level approvals. The Production
Deployment plans enable the enterprise to prepare all the necessary technical and process activities
such as putting Risk Mitigation plans in place to ensure a successful release.

PROBLEM SOLVING AND CONTINUOUS IMPROVEMENT (RELEASE RETROSPECTIVE)

A principle in the Agile Manifesto states that at regular intervals, the team reflects on how to become
more effective. IAE adheres to this principle by holding a Release Retrospective, also known as the
Inspect and Adapt workshop, at the end of each release. A Release Demo is typically held prior to the
Release Retrospective. During this ceremony, participants review the agreed upon quantitative metrics
to evaluate the performance of the current release. This is followed by a retrospective on the release
and a problem-solving workshop. Corrective action plans are devised and reviewed by the group. As a

 IAE Agile Framework

C-7 | P a g e

result of this workshop, teams come up with a set of improvement user stories that are added to the
program backlog and incorporated into the next release planning session, thus assuring that action will
be taken.

HOW TO RUN A RETROSPECTIVE:
• A communication forum held at the conclusion of every Sprint/Release
• Agile teams come together to celebrate team successes
• Teams reflect on what to be improved, develop a SMART action plan to apply lessons learned

going forward
• Identify top 3 impediments
• Create SMART action plan
• Scrum Master prioritizes actions and lessons learned based on Team direction
• Commit to track progress of the action plan

DISCUSSION POINTS:

• What went well?
• What could be improved (lessons learned)?
• How to maintain what went well
• How to improve lessons learned

RETROSPECTIVE CONCLUDES WITH AGREED UPON SMART ACTION PLAN
• Specific – target a specific area for improvement.
• Measurable – quantify or at least suggest an indicator of progress.
• Assignable – specify who will do it.
• Realistic – state what results can realistically be achieved, given available resources.
• Time-related – specify when the result(s) can be achieved

FINDING THE ROOT CAUSE: THE FIVE WHYS
The Five Whys is a proven problem-solving technique used to explore the cause-and-effect relationships
underlying a particular problem. By repeating the question, “Why?” five times, the nature of the
problem, as well as the solution becomes clear. The key is to avoid assumptions and logic traps.

Example: The Problem: My car will not start.

• Why? – The battery is dead (first why)
• Why? – The alternator is not functioning (second why)
• Why? – The alternator belt has broken (third why)
• Why? – The alternator belt was well beyond its useful service life (fourth why)
• Why? – I have not been maintaining my car according to the recommended service schedule

(fifth why, the root cause)

 IAE Agile Framework

C-8 | P a g e

FIGURE 16: ROOT CAUSE ANALYSIS – FISHBONE DIAGRAM

 IAE Agile Framework

C-9 | P a g e

APPENDIX C3: RELEASE PLANNING CHECKLIST

TABLE 17: RELEASE PLANNING CHECKLIST (DAY 1)

Release Planning Checklist
Day 1 Team

1
Team

2
Team

3
Team

4
Team

5
Team

6
Team

7
Team

8
Team

9
Team

10
 Check-In 1: Getting Started
 Do you understand the planning

requirements?
 Do you know who your team is for

the whole PI?
 Is your working space set up?
 Do you have a Program Manager &

Scrum Master?
 Do you have access to the team

members and stakeholders you
need?

 Do you understand (and can you
find) the vision that drives your
backlog?

 Have you identified the velocity for
each Sprint in your PI?

 Do you understand the architectural
context, and whom to go to for
questions?

 Do you understand which resources
are shared (e.g., UX, Training, and
Documentation) and whom to go to
for questions?

 Do you understand the role of the
System Team and DevOps, and
whom to go to for questions?

 Check-In 2: Sprint Planning
Progress

 Have hard dates been identified and
represented on the Program Board?

 Are you identifying and estimating
stories?

 Did you consider whether you need
to allocate capacity to maintenance
in your sprints?

 IAE Agile Framework

C-10 | P a g e

Is sprint story level planning in
process?

 Have you identified any
dependencies?

 Is there anything you need to discuss
with other Scrum Masters? If so,
stay for the “Meet After.”

 Check-In 3: Team Objectives
Progress

 Have you begun writing your
Release Objectives?

 Have you finished allocating capacity
(if necessary) to maintenance in
your sprints?

 Have you identified most of your
stories?

 Have you begun resolving
dependencies with other teams?

 Are your dependencies represented
on the Program Board?

 Are you identifying team and
program risks?

 Do you anticipate completing your
draft plan?

 Have all blocking issues that are
impacting planning been removed?

 Are you discussing trade-offs and
conflicting priorities with your
business owners?

 Is there anything you need to discuss
with other Scrum Masters? If so,
stay for the “Meet After.”

 Check-In 4: Draft Plan Readiness
 Are your Release Objectives and

Stretch Objectives for the Release
clear, legible, pithy and measurable
(as per SMART Objectives)?

 Have you identified remaining team
and program risks?

 Have you planned all sprints for your
PI?

 Have most dependencies been
identified and represented on the
Program Board?

 IAE Agile Framework

C-11 | P a g e

Have all blocking issues that are
impacting planning been removed?

Are you ready to present your draft
plan and risks?

 Is there anything you need to discuss
with other Scrum Masters? If so,
stay for the “Meet After.”

TABLE 18: RELEASE PLANNING CHECKLIST (DAY 2)

Release Planning Checklist
Day 2 Team

1
Team

2
Team

3
Team

4
Team

5
Team

6
Team

7
Team

8
Team

9
Team

10

Check-In 1: Progress Check-In
Do you understand how the
management team feedback affects
your team?

Are you confident you have identified
remaining dependencies based on the
latest feedback, and have you
represented them on the program
board?

Are you confident you have identified
all hard dates based on the latest
feedback and represented them on
the program board?

Are you confident you have identified
your program risks based on the latest
feedback?

Have you re-planned all Sprints in the
Release as necessary?

Have you confirmed whether or not
there is an opportunity to release
before the end of the Release? (If
there is, please indicate it on the
Program Board in the
Milestones/Events swim lane)

Are your revised Release Objectives
and Stretch Objectives clear, legible,
pithy and more measurable (as per
SMART Objectives)? Do they include
dates where applicable?

Have your business owners begun
prioritizing your Release Objectives

 IAE Agile Framework

C-12 | P a g e

and Stretch Objectives?

Do you anticipate completing your
final plan?

Have all blocking issues that are
impacting planning been removed?

Check-In 2: Final Plan Readiness
Are all your NOs above YES now?

Are your Release Objectives, Stretch
Objectives, and business value
finalized?

Have you resolved all known
remaining dependencies and
represented them on the Program
Board?

Are your team risks mitigated?

Are your program risks ready for
review ("ROAM"ing)?

Are you ready to present your final
plan?

 IAE Agile Framework

C-13 | P a g e

APPENDIX C4: IAE PROGRAM MANAGER PROGRAM-LEVEL CHECKLIST

The following are the key tasks the IAE Program Manager needs to monitor/manage.

TABLE 19: IAE PROGRAM MANAGER PROGRAM CHECKLIST

*IAE business and technical Program Managers wear multiple hats. They perform the roles of Epic
Owner, Product Manager and Product Owner.

IAE Program Manager Program-Level Checklist Status
Understand the budget parameters for the upcoming fiscal period

Understand how strategic themes influence the strategic direction of the ART

Participate in discussions and development of the business case for Portfolio and
Program Epics that affect your domain

Create program vision

Continuously develop and communicate the vision to the development teams

Define and maintain the nonfunctional requirements to help assure the solution
meets relevant standards and other system quality requirements

Develop and communicate the roadmap for features for the next program
increment

Work with the System Architect to understand architectural work

Create and maintain the Program Backlog

Decompose program Epics to Features

Manage the program Feature backlog and develop Feature acceptance criteria

Define releases and program increments

Participate in release management and solution validation

Build an effective Product Management Team

 IAE Agile Framework

D-1 | P a g e

D. TEAM INFORMATION

APPENDIX D1: TEAM ROLES AND RESPONSIBILITIES
The following are the key Roles and Responsibilities at the Team Level.

TABLE 20: KEY ROLES AND RESPONSIBILITIES (TEAM LEVEL)

Role Responsibility

Product Owner* Works with product management to plan releases

 Defines and accepts User Stories

 Defines User Story acceptance criteria

 Maintains and prioritizes the Product Backlog

 Clearly communicate the business case to the Team and Stakeholders

Scrum Master Runs team meetings, enforces Agile behavior

 Removes impediments; protects the team from outside influence

 Attends integration or Scrum of Scrums meetings

 Creates the Task Board and Sprint Burndown Chart

 Preserves the integrity and spirit of the IAE Agile framework

Scrum Team Develops and commits to Team’s Release Objectives and Sprint Goals

 Creates and refines User Stories and acceptance criteria

 Implements, builds, tests, and deploys User Stories

 Self-organizing and self-managing to accomplish Sprint goals

Stakeholders Participates in Sprint Planning, Review/Demo

 Serves as one of the key sources of information while preparing product
requirements (Epic/Feature/Story)

 Remains engaged from definition to the completion of the Epic

 Provides ongoing feedback and support

 Collaborates with Product Owner

 Reviews the Planned vs. Actual progress

 Participates in Release Planning

* IAE business and technical Program Managers wear multiple hats. They perform the roles of Epic
Owner, Product Manager and Product Owner.

 IAE Agile Framework

D-2 | P a g e

APPENDIX D2: TEAM LEVEL PROCESS DETAILS

The following diagram represents the Team Level Process, which is at the lowest level in the framework.

FIGURE 17: TEAM LEVEL PROCESS OVERVIEW

The team level in the IAE Agile Framework is composed of teams who are empowered to make local
decisions and are accountable to deliver on the Program Commitments. The Product Owners
collaborate with the Epic Owners and Architects to elaborate on the User Stories and create Acceptance
Criteria. All the teams develop in cadence and synchronize to the Release Schedule. They produce
valuable, fully-tested software increments every two weeks using Scrum project management and Agile
Engineering Practices under the guidance of program vision, architecture and user experience resources.
Teams work in a regular, synchronized cadence with one another to provide regular injection points to
the system. This regular cadence is encompassed by the two-week sprint, which uses the current team
backlog as input and includes the following:

 Planning for the upcoming sprint

 Execution of the sprint by developing and testing the agreed-to user stories,

 Demonstration of the resulting software, and

 The sprint retrospective.

TEAMS PRACTICES

 One way they do this is by developing User Stories incrementally by conducting multiple
Define/Build/Test cycles during the course of the Sprint and not falling back on waterfall-style
development methods.

 Teams must strive to create User Stories that are vertical slices of the technology stack and can
be developed within a Sprint to create demonstrable software that increases business value
delivery.

 Developing smaller pieces of functionality incrementally provides a quicker feedback mechanism
because small chunks of working software can be continuously integrated into the larger
system.

 This will also uncover dependencies across trains sooner.

 IAE Agile Framework

D-3 | P a g e

 Agile Teams, in addition to the Dev Ops team, should also follow the Agile Engineering Practices
in order to encourage the production of high quality code.

 These practices include Agile Architecture, Continuous Integration, Test-First, Refactoring, Pair
Work, Collective Ownership and DevOps.

 These practices are described more thoroughly in the Agile Engineering Practices section.

TEAM PROCESS

The primary purpose of the team process is to ensure that quality software is developed and the
product aligns with the program vision.

The following sections provide an overview of ceremonies in the Agile process. These ceremonies are
structured with specific purpose and expected outcome, and they are designed to support continuous
delivery of value as well as scaling Agile to the enterprise level. Please reference the Ceremonies table
in Appendix A6 for additional details on the purpose, participants, inputs, outputs and frequency of each
ceremony.

The purpose of team-level ceremonies is to provide a structure where implementation is done in a time-
boxed and iterative fashion, in which Agile Teams deliver incremental value in the form of working
software. IAE adheres to basic team-level practices based on SAFe, Scrum and eXtreme Programming
(XP) practices. Agile Teams conduct Sprint Planning -> implementation -> demonstration ->
retrospective to develop high quality products in two-week sprints.

It is highly recommended that all teams conform to Scrum at the team level. IAE will be conducting
Scrum of Scrum meetings to discuss their work, focusing especially on areas of overlap, dependencies
and integration.

BACKLOGS

Backlog Grooming ensures that the priorities align with the latest program direction and that the
backlog is elaborated sufficiently to support successful Sprint Planning. The Agile Team is expected to
support the Product Owner in grooming and refining the Team Backlog. Technical expertise will help
establish accurate size estimates for items in the backlog. Large user stories may be decomposed into
smaller stories and tasks.

TEAM BACKLOG

Team Backlog represents the collection of all the things a team needs to do to advance their portion of
the system solution. It can contain User Stories, future Features, Technical Stories, tasks, defects,
infrastructure work, spikes, refactors, and anything else a team needs to do. Stories can be broken
down even further into tasks within the Story in order to make the development more manageable.
Each Story must also contain a set of acceptance criteria that can be used to ensure that the Story
delivers the intended benefits.

Sources in the “Team Backlog” can come from the program backlog, the team’s local context, or other
stakeholders’ needs, as described below.

Program Backlog. During release planning, the Features that are planned for the release are broken
into stories and tentatively allocated to individual upcoming Sprints in the team backlog. Features

 IAE Agile Framework

D-4 | P a g e

planned for upcoming releases can be stored in the team backlog. Also, the backlog can contain Stories
for one team’s portion of a program-level Feature that requires more than one team to complete.

Team Context. The team can also have a set of local Stories that are driven by the customer but do not
come from the program backlog. This includes work such as maintenance, research, refactors and
technology upgrades.

Other Stakeholders. The team backlog can also contain Stories that support other teams’ and
stakeholders’ objectives.

The team must strike the proper balance between implementing new Stories while ensuring they take
care of any internally-facing work that they need to complete.

The Product Owner is also the owner of the team backlog and is responsible for defining, prioritizing and
maintaining it. IAE maintains the team backlog using the ALM tool.

SPRINT BACKLOG

During Sprint Planning, teams select the highest priority items in the team backlog to implement in each
Sprint. Stories coming from the program backlog should already be assigned a priority. Local stories can
be prioritized using a value/size criterion, or even by applying full WSJF, if desired. Story point estimates
must be provided for each Story.

At the Team level, individual teams decompose Features into Stories and Tasks in the Team Backlog,
which can contain any item that the team needs to work on such as defects, infrastructure work or
spikes. Spikes are a special type of research story used to gain the knowledge necessary to reduce the
risk of a technical approach, better understand a requirement or increase the reliability of a Story
estimate. The Agile Team meets at least once every Sprint to conduct Team Backlog Grooming. The
Product Owner facilitates the Backlog Grooming session. During Team Backlog Grooming, the team
does the following:

 Reviews the team backlog and implementation status

 Ensures that acceptance criteria exist for all stories

 Verifies story estimates

 Discusses the plan to build/maintain the development infrastructure and architectural runway,
and

 Prepares for Sprint Planning.

SPRINT PLANNING

The Product Owner attends Sprint Planning and presents the prioritized Team Backlog to the team.
Each team picks high-priority User Stories from the Team Backlog and commits them to the Sprint
backlog for execution. The team’s backlog has already been partially pre-planned during Release
Planning. Sprint Planning is typically time-boxed to four hours or fewer. The output of this process is
the team’s commitment to implement stories in the sprint backlog. The team also commits to achieve
Sprint goals that support the current release objectives.

Sprint Planning is a key Scrum ceremony. The purposes of the meeting are listed below:

 The Product Owner attends Sprint Planning

 IAE Agile Framework

D-5 | P a g e

 Present the prioritized Team Backlog

 Discuss the Stories, estimate Story Points, and commit to a set of User Stories for the Sprint.

 Attendees include the Product Owner, Scrum Master (who acts as the facilitator), Agile Team,
and other stakeholders.

 The Sprint Planning session is essentially a matter of refining the Sprint plans that resulted from
the release planning and previous Backlog Grooming session.

 The team begins by quantifying their capacity for the upcoming Sprint and developing the Sprint
goals based on team and release objectives from the release planning session.

 Next, the team discusses each Story, develops acceptance criteria, determines size estimates
and finalizes priorities for the Stories in the team backlog.

 User Stories are broken down into tasks, estimates are devised, dependencies are identified,
and team members are assigned to each task until workloads are evenly distributed.

 The Team picks the high-priority backlog items and commits to the Sprint backlog for execution

 The Scrum Master ensures the team makes the commitment

 The Product Owner approves the Sprint plan.

TASKS

Stories can be decomposed into tasks to provide a breakdown of the individual requirements needed to
complete the story. They facilitate coordination, estimation, status tracking and assigning individual
responsibilities. Tasks provide value by exposing dependencies within the team as well as bottlenecks,
resource availability, etc. Generally, a task is a small effort that can be completed within one day. If a
task is too big to complete within two days, then the Story is too big and should be split. It is advisable
t*o use the SMART criteria, as described below, when developing tasks.

 Specific: A task needs to be specific enough that everyone can understand what’s involved in it.

 Measureable: The key measure is, “Can we mark it as done?”

 Achievable: The task owner should expect to be able to achieve a task.

 Relevant: Every task should contribute to the story at hand.

 Time-boxed: A task should be limited to a specific duration.

INFORMATION SHARING (DAILY SCRUM)

The Daily Scrum is designed to help the team set the context for the coming day’s work. This meeting is
time-boxed to 15 minutes to keep the discussions concise and relevant. The team can quickly share
information on what was accomplished yesterday, what is planned for today, and report any
impediments. The Scrum Master is responsible for helping the team resolve impediments.

THE SCRUM MEETING
• The daily Scrum is a 15-minute time-boxed meeting
• The development team synchronizes activities, communicates, and raises issues that hinder

progress
• It is predetermined and held at the same time daily
• The team provides answers to the following 3 questions:

o What have you accomplished since the last Scrum?

 IAE Agile Framework

D-6 | P a g e

o What do you plan to accomplish before the next Scrum?
o What impediments do you have?

BENEFITS OF DAILY SCRUM

• Less time spent in daily meetings
• Impediments immediately identified
• Daily snapshot on progress
• Early and frequent feedback
• Keeping the focus on identified goals of the Sprint
• Manages teams’ ability to provide vital information to stakeholders resolve issues potentially

before they may have to become a “red flag.”

DEMONSTRATE SPRINT DELIVERABLE (SPRINT DEMO)

The purpose of the Sprint Demo is to show the progress the team has made to the Product Owner and
other stakeholders. The Sprint Demo, sometimes called the Team Demo or Sprint Review, takes place at
the end of each two-week Sprint. The Sprint Demo starts with a quick review of the Sprint goals and
metrics followed by a demonstration of each completed Story. After the demonstration, the team
discusses which Stories were not completed and why they were not done. A retrospective is held
immediately after the Sprint Demo to discuss how the team can be more effective going forward.

The Sprint Demo guidelines:

 The Product Owner attends the Sprint Demo

 The Product Owner accepts or rejects each User Story based on the DoD criterion.

 During this demo, teams demonstrate completed User Stories to the Product Owner and other
stakeholders and review Sprint metrics.

 During the demonstration, the team should reference the Definition of Done for each user story.
The demonstration is important because it is an opportunity to obtain valuable feedback from
key stakeholders.

 Teams should start thinking about the demo during Sprint Planning in order to foster a more
thorough understanding of the needed functionality.

 After the demonstration, teams should reflect on which Stories were not completed and why.
The team should also address how well it is progressing toward release objectives.

TEAM IMPROVEMENT PLANNING (SPRINT RETROSPECTIVE)

At the end of each Sprint, the team holds a retrospective to reflect on how to become more effective.
This meeting is typically time-boxed to an hour for team members to discuss what went well, what
didn’t, and what the team can do better next time. The team reviews performance metrics and
discusses any impediments and challenges faced during the past iteration. Root cause analysis is
performed, and corrective actions are logged as user stories in the Team Backlog. The team picks one or
two improvement items to target for the next Sprint. If necessary, the improvement items may become
backlog items in the form of User Stories that are prioritized by the Product Owner with input from the
team.

 IAE Agile Framework

D-7 | P a g e

The Sprint Retrospective guidelines:

 During the Sprint Retrospective, teams discuss their practices and reflect on how to become
more effective.

 This meeting is time-boxed to an hour or less.

 The whole team participates in the meeting, with the Scrum Master acting as facilitator.

 The meeting is composed of both quantitative and qualitative parts.

 For the quantitative review, the team determines whether they met the Sprint goals and then
analyzes relevant metrics, including velocity.

 For the qualitative review, the team reviews the improvement backlog to determine if they met
their previous improvement objectives.

 They also review the current Sprint to determine what went well, what didn’t go so well, and
what they could do better next time.

 IAE Agile Framework

D-8 | P a g e

APPENDIX D3: IAE PRODUCT OWNER TEAM-LEVEL CHECKLIST

The following are the key tasks the Product Owner* needs to monitor and manage at the team level.

TABLE 21: IAE PRODUCT OWNER TEAM CHECKLIST

IAE Product Owner Team-Level Checklist Status
Product Owner attends Sprint Planning

Product Owner provides Sprint goal

Product Owner approves Sprint Plan

Product Owner provides story acceptance criteria

Product Owner builds the product backlog

Product Owner grooms the product backlog

Product Owner maintains the product backlog

Product Owner reviews and prioritizes the backlog for iteration planning

Product Owner coordinates content dependencies with other Product Owners

Product Owner approves final iteration plan

Validate acceptance criteria and that each User Story has the appropriate, persistent
acceptance tests, and otherwise meets its definition of done

Attend sprint demos

Product Owner accepts/rejects User Story based on DoD

All team members attend retrospectives

Product Owner inquires whether any root cause analysis (RCA) was performed

Product Owner verifies RCA action plan

Product Owner updates user story in team backlog with new RCA action plan

Developers enter/maintain their tasks

*IAE business and technical Program Managers wear multiple hats. They perform the roles of Epic
Owner, Product Manager and Product Owner.

